

FROM OUR PEER REVIEW ...

“Chris Richardson targets critical design issues for lightweight Java
enterprise applications using POJOs with fantastic in-depth exam-
ples. This book extends Martin Fowler’s great book, Enterprise
Architecture Patterns, as well as the more recent Domain-Driven Design
by Eric Evans, by providing practical design guidance and useful
examples. It also addresses the architecture and design issues asso-
ciated with Spring and Hibernate development, whereas Man-
ning’s companion ‘in Action’ books focus primarily on the Spring
and Hibernate technologies.

“This is a powerful book for architects, senior developers, and
consultants. It uniquely combines best practices and design wisdom
to integrate domain-driven design and test-driven development for
object-oriented Java enterprise applications using lightweight
Spring, Hibernate, and JDO technologies.

“The table of contents reflects the important topics that most
architects and enterprise developers face every day. There is signifi-
cant need for a book like this, which shows how to address many
common and complex design issues with real-world examples. The
content in this book is unique and not really available elsewhere.”

DOUG WARREN

Software Architect
Countrywide Financial

“POJOs in Action fills a void: the need for a practical explanation of
the techniques used at various levels for the successful building of
J2EE projects. This book can be compared with the less enterprise-
oriented and more abstract J2EE Development without EJB by Rod
Johnson, but Richardson offers a step-by-step guide to a successful
J2EE project. The explanations of the various alternatives available
for each step provide the main thrust of this book. Also, the various
‘When to use it’ paragraphs are helpful in making choices.

“The ‘lightweight J2EE’ point of view is very under-represented in
books and this one is the most didactic J2EE-light book I have read.”

OLIVIER JOLLY

J2EE Architect
Interface SI

“POJOs in Action provides good coverage of the current EJB 3.0 and
POJO discussions in the developer community. The book is easy to
read and has lots of good examples. It provides a complete discus-
sion of the subject matter, from the basic data definitions to
the implications on the client-side: I haven’t seen another book that
takes this approach, so it definitely fills a niche.

“The author describes some technologies as being unsuitable for
most situations, but sticks to his guns and maintains the philosophy
of providing the user with a choice, describing each possible solu-
tion in depth, despite previous assertions that a particular solution
may be sub-optimal. This reflects the realities in a developer’s world,
where we are often forced to use technologies that we might not
have chosen ourselves: this support is A Good Thing.

“Compared to Martin Fowler’s Enterprise Architecture Patterns,
which provides a generalized description of the enterprise, this book
attempts to present the solutions to the situations Fowler describes.
While much of the information can be found elsewhere, including
the websites for the technologies as well as Fowler’s book, the
combination of focused information and the explicit samples makes
POJOs in Action much more than the sum of its parts. It isn’t merely a
duplication of what’s available elsewhere: it carefully explains the
technologies with plenty of sample code, in a consistent style.”

BRENDAN MURRAY

Senior Software Architect
IBM

POJOs in Action
DEVELOPING ENTERPRISE APPLICATIONS

WITH LIGHTWEIGHT FRAMEWORKS

CHRIS RICHARDSON

M A N N I N G
Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in
quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax:(203) 661-9018
Greenwich, CT 06830 email: manning@manning.com

©2006 by Chris Richardson. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books they publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Liz Welch
209 Bruce Park Avenue Typesetter: Gordan Salinovic
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1932394583

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – VHG – 10 09 08 07 06 05

 To my mum, my dad, and my grandparents
 Thank you for everything

 mmmmmmmmmmmmmmmmmmmmmmmmmmm—C. R.

brief contents
PART 1 OVERVIEW OF POJOS AND LIGHTWEIGHT

FFFFFFFFFFFFFFFFRAMEWORKS ...1
Chapter 1 ■ Developing with POJOs: faster and easier 3
Chapter 2 ■ J2EE design decisions 31

PART 2 A SIMPLER, FASTER APPROACH................... 59
Chapter 3 ■ Using the Domain Model pattern 61
Chapter 4 ■ Overview of persisting a domain model 95
Chapter 5 ■ Persisting a domain model with JDO 2.0 149
Chapter 6 ■ Persisting a domain model with Hibernate 3 195
Chapter 7 ■ Encapsulating the business logic with a POJO façade 243

PART 3 VARIATIONS ... 287
Chapter 8 ■ Using an exposed domain model 289
Chapter 9 ■ Using the Transaction Script pattern 317

Chapter 10 ■ Implementing POJOs with EJB 3 360
vii

viii BRIEF CONTENTS
PART 4 DEALING WITH DATABASES AND
CCCCCCCCCCCCCONCURRENCY405

Chapter 11 ■ Implementing dynamic paged queries 407
Chapter 12 ■ Database transactions and concurrency 451
Chapter 13 ■ Using offline locking patterns 488

contents
preface xix
acknowledgments xxi
about this book xxiii
about the title xxx
about the cover illustration xxxi

PART 1 OVERVIEW OF POJOS AND
LLLLLLLLLLLIGHTWEIGHT FRAMEWORKS1

1 Developing with POJOs: faster and easier 3
1.1 The disillusionment with EJBs 5

A brief history of EJBs 5 ■ A typical EJB 2 application architecture 6
The problems with EJBs 7 ■ EJB 3 is a step in the right direction 11

1.2 Developing with POJOs 12
Using an object-oriented design 14 ■ Using POJOs 15 ■ Persisting
POJOs 16 ■ Eliminating DTOs 18 ■ Making POJOs
transactional 19 ■ Configuring applications with Spring 25
Deploying a POJO application 27 ■ POJO design summary 28

1.3 Summary 30
ix

x CONTENTS
2 J2EE design decisions 31
2.1 Business logic and database access decisions 32

2.2 Decision 1: organizing the business logic 35
Using a procedural design 35 ■ Using an object-oriented design 36
Table Module pattern 37

2.3 Decision 2: encapsulating the business logic 37
EJB session façade 38 ■ POJO façade 39
Exposed Domain Model pattern 40

2.4 Decision 3: accessing the database 41
What’s wrong with using JDBC directly? 41
Using iBATIS 42 ■ Using a persistence framework 43

2.5 Decision 4: handling concurrency
in database transactions 44
Isolated database transactions 44 ■ Optimistic locking 45
Pessimistic locking 45

2.6 Decision 5: handling concurrency in long
transactions 46
Optimistic Offline Lock pattern 46
Pessimistic Offline Lock pattern 47

2.7 Making design decisions on a project 48
Overview of the example application 48 ■ Making high-level design
decisions 51 ■ Making use case–level decisions 53

2.8 Summary 58

PART 2 A SIMPLER, FASTER APPROACH 59

3 Using the Domain Model pattern 61
3.1 Understanding the Domain Model pattern 62

Where the domain model fits into the overall architecture 63
An example domain model 64 ■ Roles in the domain model 66

3.2 Developing a domain model 68
Identifying classes, attributes, and relationships 69
Adding behavior to the domain model 69

CONTENTS xi
3.3 Implementing a domain model: an example 80
Implementing a domain service method 80 ■ Implementing a domain
entity method 87 ■ Summary of the design 92

3.4 Summary 93

4 Overview of persisting a domain model 95
4.1 Mapping an object model to a database 96

Mapping classes 97 ■ Mapping object relationships 99 ■ Mapping
inheritance 103 ■ Managing object lifecycles 107
Persistent object identity 107

4.2 Overview of ORM frameworks 108
Why you don’t want to persist objects yourself 109 ■ The key features
of an ORM framework 109 ■ Benefits and drawbacks of using an
ORM framework 114

4.3 Overview of JDO and Hibernate 117
Declarative mapping between the object model and the schema 117
API for creating, reading, updating, and deleting objects 118
Query language 119 ■ Support for transactions 120 ■ Lazy and
eager loading 121 ■ Object caching 121 ■ Detached objects 124
Hibernate vs. JDO 124

4.4 Designing repositories with Spring 125
Implementing JDO and Hibernate repositories 125 ■ Using the Spring
ORM classes 126 ■ Making repositories easier to test 129

4.5 Testing a persistent domain model 132
Object/relational testing strategies 133 ■ Testing against the
database 135 ■ Testing without the database 138
Overview of ORMUnit 140

4.6 Performance tuning JDO and Hibernate 141
Without any tuning 141 ■ Configuring eager loading 142
Using a process-level cache 145 ■ Using the query cache 145

4.7 The example schema 146

4.8 Summary 148

5 Persisting a domain model with JDO 2.0 149
5.1 JDO issues and limitations 150

Configuring JDO object identity 151 ■ Persisting interfaces 155
Using the JDO enhancer 158

xii CONTENTS
5.2 Persisting a domain model class with JDO 159
Writing JDO persistence tests with ORMUnit 159 ■ Testing persistent
JDO objects 164 ■ Making a class persistent 170

5.3 Implementing the JDO repositories 173
Writing a mock object test for findRestaurants() 174 ■ Implementing
JDORestaurantRepositoryImpl 178 ■ Writing the query that finds the
restaurants 180 ■ Writing tests for a query 180

5.4 JDO performance tuning 183
Using fetch groups to optimize object loading 184 ■ Using a Persis-
tenceManagerFactory-level cache 191 ■ Using a query cache 193

5.5 Summary 193

6 Persisting a domain model with Hibernate 3 195
6.1 Hibernate ORM issues 196

Fields or properties 196 ■ Hibernate entities and components 198
Configuring object identity 200 ■ Using the cascade attribute 205
Persisting interfaces 207

6.2 Other Hibernate issues 209
Exception handling 209
Lazy loading and inheritance hierarchies 209

6.3 Persisting a domain model class using Hibernate 212
Writing Hibernate persistence tests with ORMUnit 213 ■ Testing
persistent Hibernate objects 217 ■ Making a class persistent 224

6.4 Implementing a repository using Hibernate 228
Writing a mock object test for a repository method 228 ■ Implementing
HibernateRestaurantRepositoryImpl 231 ■ Writing the query that
finds the restaurants 232 ■ Writing tests for a query 233

6.5 Hibernate performance tuning 234
Using eager loading 235 ■ Using a process-level cache 240
Using a query cache 241

6.6 Summary 242

7 Encapsulating the business logic with a POJO façade 243
7.1 Overview of a POJO façade 244

An example POJO façade 245 ■ Benefits of a POJO façade 247
Drawbacks of a POJO façade 248 ■ When to use a POJO façade and
detached domain objects 250

CONTENTS xiii
7.2 POJO façade design decisions 251
Encapsulating the domain objects 251 ■ Detaching objects 254
Exceptions versus status codes 256 ■ Managing transactions and
connections 257 ■ Implementing security 261
Supporting remote clients 263

7.3 Designing a POJO façade’s interface 264
Determining the method signatures 264

7.4 Implementing the POJO façade 267
Writing a test for a POJO façade method 267
Implementing updateRestaurant() 270

7.5 Implementing a result factory 272
Implementing a Hibernate result factory 273
Implementing a JDO result factory 275

7.6 Deploying the POJO façade with Spring 279
Generic bean definitions 280 ■ JDO-specific bean definitions 282
Hibernate bean definitions 284

7.7 Summary 286

PART 3 VARIATIONS ...287

8 Using an exposed domain model 289
8.1 Overview of the Exposed Domain Model pattern 290

Applying the Exposed Domain Model pattern 291 ■ Benefits and
drawbacks of this pattern 293 ■ When to use the Exposed Domain
Model pattern 294

8.2 Managing connections using a Spring filter 295

8.3 Managing transactions 296
Managing transactions in the presentation tier 297
Managing transactions in the business tier 299

8.4 An example of the Exposed Domain Model pattern 304
Servlet design 306 ■ JSP page design 309
PlaceOrderService configuration 310

8.5 Using JDO with an exposed domain model 311
Defining the Spring beans 311
Configuring the web application 312

xiv CONTENTS
8.6 Using Hibernate with an exposed domain model 314
Defining the Spring beans 314
Configuring the web application 314

8.7 Summary 316

9 Using the Transaction Script pattern 317
9.1 Overview of the Transaction Script pattern 318

Applying the Transaction Script pattern 319
Benefits and drawbacks of the Transaction Script pattern 322
When to use the Transaction Script pattern 324

9.2 Identifying the transaction scripts 325
Analyzing the use case 325 ■ Analyzing the user interface
design 326 ■ The PlaceOrderTransactionScripts interface 327

9.3 Implementing a POJO transaction script 329
Writing a test for the transaction script 329
Writing the transaction script 333

9.4 Implementing the DAOs with iBATIS and Spring 337
Overview of using iBATIS with Spring 339
Implementing a DAO method 343

9.5 Configuring the transaction scripts using Spring 354
How Spring manages JDBC connections and transactions 354
The Spring bean definitions 355

9.6 Summary 358

10 Implementing POJOs with EJB 3 360
10.1 Overview of EJB 3 361

Key improvements in EJB 3 362 ■ Key limitations of EJB 3 368
10.2 Implementing a domain model with EJB 3 372

Mapping the classes to the database 372 ■ Implementing
repositories 380 ■ Testing the persistent EJB domain model 382

10.3 Implementing a façade with EJB 3 385
Turning a POJO façade into a session bean 386
Detaching objects 387

10.4 Assembling the components 389
Using EJB dependency injection 390 ■ Integrating Spring and EJB
dependency injection 392 ■ Using Spring dependency injection 398

CONTENTS xv
10.5 Implementing other patterns with EJB 3 400
Implementing the Exposed Domain Model pattern 400 ■ Implement-
ing the Transaction Script pattern 401 ■ Implementing dynamic
paged queries 401 ■ Implementing the concurrency patterns 403

10.6 Summary 403

PART 4 DEALING WITH DATABASES
AAAAAAAAAAND CONCURRENCY405

11 Implementing dynamic paged queries 407
11.1 Key design issues 408

Implementing a paging mechanism 410 ■ Generating queries
dynamically 413 ■ Improving the performance of SQL queries 414

11.2 Implementing dynamic paged queries with iBATIS 418
Using queryForList() to select the rows 420
Using ROWNUM to select the rows 422

11.3 Implementing paged queries with JDO and
Hibernate 424
Generating Hibernate and JDO queries dynamically 426 ■ Loading
the data with a single SELECT statement 428 ■ Loading a subset of
an object’s fields 431 ■ Working with a denormalized schema 434
Implementing paging 435

11.4 A JDO design example 438
The JDOOrderRepositoryImpl class 439
The ExecuteFindOrdersQuery class 441

11.5 A Hibernate design example 442
The HibernateOrderRepositoryImpl class 443
The FindOrdersHibernateCallback class 444

11.6 Using JDO and Hibernate native SQL queries 446
Using JDO native SQL queries 446
Using Hibernate SQL queries 448

11.7 Summary 449

xvi CONTENTS
12 Database transactions and concurrency 451
12.1 Handling concurrent access to shared data 452

Using fully isolated transactions 453 ■ Optimistic locking 454
Pessimistic locking 458 ■ Using a combination of locking
mechanisms 461

12.2 Handling concurrent updates in a JDBC/iBATIS
application 462
Design overview 462 ■ Using optimistic locking 464 ■ Using pes-
simistic locking 466 ■ Using serializable or repeatable read
transactions 466 ■ Signaling concurrent update failures 468

12.3 Handling concurrent updates
with JDO and Hibernate 472
Example domain model design 472 ■ Handling concurrent updates
with JDO 474 ■ Handling concurrent updates with Hibernate 478

12.4 Recovering from data concurrency failures 483
Using an AOP interceptor to retry transactions 484
Configuring the AOP interceptor 485

12.5 Summary 486

13 Using offline locking patterns 488
13.1 The need for offline locking 489

An example of an edit-style use case 490
Handling concurrency in an edit-style use case 490

13.2 Overview of the Optimistic Offline Lock pattern 492
Applying the Optimistic Offline Lock pattern 493 ■ Benefits and
drawbacks 494 ■ When to use this pattern 494

13.3 Optimistic offline locking with JDO and Hibernate 495
Using version numbers or timestamps 495
Using detached objects 497

13.4 Optimistic offline locking with detached objects
example 501
Implementing the domain service 502 ■ Implementing the persistent
domain class 504 ■ Detaching and attaching orders 505

13.5 The Pessimistic Offline Lock pattern 508
Motivation 508 ■ Using the Pessimistic Offline Lock pattern 509
Benefits and drawbacks 510 ■ When to use this pattern 511

CONTENTS xvii
13.6 Pessimistic offline locking design decisions 511
Deciding what to lock 512 ■ Determining when to lock and unlock the
data 512 ■ Choosing the type of lock 512 ■ Identifying the lock
owner 513 ■ Maintaining the locks 513 ■ Handling locking
failures 519 ■ Using pessimistic offline locking in a domain
model 520 ■ Implementing a lock manager with iBATIS 520
Implementing the domain service 522 ■ Adapting the other use
cases 529

13.7 Summary 532

references 535
index 539

preface
Back in 1999, I enthusiastically embraced J2EE and started developing applica-
tions with servlets, JSP pages, and EJBs. Even though I was an uncritical fan of
those frameworks, I found that I could simplify development by using what came
to be known as “Plain Old Java Objects” (POJOs). For example, in the presenta-
tion tier I wrote servlets that delegated to POJOs. And in the business tier I wrote
session beans that delegated to POJOs and entity beans that extended POJOs.
Using POJOs enabled me to test my code without having to wait for it to be
deployed in the server. Because POJOs were not directly supported by the servlet
and EJB frameworks, however, I had to jump through a few hoops to use them.

 Ironically, it wasn’t until after writing an article describing some of those hoops
that I started to use lightweight frameworks which support POJOs directly. A cou-
ple of reader comments were along the lines of “Why bother with entity beans—
why not use an object/relational mapping framework instead? It's a lot simpler.”
Another reader suggested using Hibernate and another suggested JDO, which
were two technologies that I was only vaguely aware of. After experimenting with
them for a couple of weeks, I realized that they made persisting objects a lot eas-
ier. I found I could develop and test most of the business logic outside of the
server. I was hooked!

 Hibernate and JDO replaced entity beans, but what to do about those pesky ses-
sion beans? They need to be deployed in a server, which slows down development.
The solution came in the form of the Spring framework. I’d read a few articles
xix

xx PREFACE
about Spring, but its significance did not sink in until I went to TheServer-
Side.com’s Java Symposium (TSSJS) 2004. For the three days I was there, I was
indoctrinated in the joys of dependency injection, Spring, and aspect-oriented pro-
gramming (AOP). I realized that I could replace the session beans with Spring-
managed POJOs. I started using Spring right away and immediately found that I
could do most development without going near a server. And if a server was
required, I could mostly use lightweight servers such as a Jetty. The impact on
development was remarkable. All of the benefits of agile development became
readily accessible to me.

 Somewhere along the way, I decided to write this book to share what I had
learned. My goal is to teach other developers simpler and faster ways to write enter-
prise Java applications. I also want to contribute to the Java community from whom
I had learned a lot by reading all of those books, articles, and blogs. Originally, this
book was going to cover EJBs, JDO, and Hibernate. I had planned to write about
how to use POJOs and EJBs together. But when I discovered that a pure POJO and
lightweight framework design was a much better approach for many enterprise
Java applications, I decided to write a book that focused on POJOs.

 Writing this book has been an “interesting” experience, to put it mildly. It has
occupied all of my spare time for so long that I’ve worn out my desk chair and
occasionally I’m surprised that I have three children instead of two. (When did
that happen?) Along the way I’ve learned a lot. I’ve been challenged to think hard
about what works and what doesn’t. I hope that in this book you will find simpler
and faster ways to develop your enterprise Java applications.

acknowledgments
I love deadlines. I like the whooshing sound they make as they fly by.

 —Douglas Adams

Many deadlines whooshed by as I labored on this book in my downstairs office for
far longer than anyone could possibly imagine. Despite the missed deadlines,
Manning publisher Marjan Bace refused to give up on me. I’m grateful to him for
his determination to see this book published and for pushing me to complete it.

 There are also several others at Manning Publications whom I wish to thank,
especially Jackie Carter for doing an excellent job as my developmental editor.
The hours we spent discussing the chapters forced me to clarify my thoughts and
made me a better writer. I’d like to thank Doug Bennett for the final round of
development editing that brought the book over the finish line. And many thanks
to the rest of the POJOs in Action production team: project manager Mary Piergies,
copyeditor Liz Welch, review editor Karen Tegtmayer, design editor Dottie Mar-
sico, cover designer Leslie Haimes, webmaster Ian Shigeoka, proofreader Eliza-
beth Martin, publicist Helen Trimes, and typesetter Gordan Salinovic.

 I am very grateful to the numerous reviewers who provided valuable feedback
and helped improve the manuscript: Ara Abrahamian, Muhammad Ashikuzza-
man, Robert Benson, Michael Caro, Neal Ford, Peter George, Ajay Govindarajan,
Jack Herrington, Olivier Jolly, Gavin King, Michael Koziarski, Patrick Linskey, Ron
Lichty, John D. Mitchell, Tony Morris, Brendan Murray, J. B. Rainsberger, Nor-
man Richards, Anne Rosset, Russ Rufer, Jon Skeet, Chris Smith, David Tinker,
xxi

xxii ACKNOWLEDGMENTS
Luigi R. Viggiano, David Vydra, Doug Warren, Meghan Ward, Miles Woodroffe,
and Oliver Zeigermann.

 I would like to thank a number of reviewers in particular. Sincere thanks to
Azad Bolour for both the time he spent reviewing the book face to face and for
the tea and cheese he provided during those reviews, and to Jennifer Shi, who gra-
ciously spent part of her vacation reviewing the draft manuscript. I’d also like to
thank the technical reviewers, Brendan Murray, Olivier Jolly, and Oliver Zeiger-
mann who proofread the final text and code shortly before the book went to
press. Any errors that remain are entirely my responsibility.

 I’m also very grateful to many of the people I have worked with over the years
developing enterprise Java applications. I'd like to thank my former colleagues at
BEA, including Ajay Ailawahdi, Ashok Anand, Durai Kalaiselvan, Georgia
McNamara, Dave Robinson, Scott Shaw, Sushil Shukla, and Kumar Sundararaman.
Many thanks to my former colleagues at Insignia Solutions, Inc: Mainak Datta, Paul
Edmonds, Ajay Govindarajan, Anne Rosset, Daniel Huang, Bidyut Pattanayak,
Senthil Saivam, and Harold Scanlon. Much of this book is a result of the experi-
ence I gained while working with them. They were the guinea pigs as I experi-
mented with new and better frameworks for building applications.

 Finally, many thanks to my family and friends for their support. Extra special
thanks to Brian and Mariann for keeping my family company while I worked on
the book. I’d like to thank my children, Janet, Thomas, and Ellie, for providing
constant laughter and joy—and a reason to take a break from writing. Last, and
most important, I would like to thank my wife Laura for her constant love,
encouragement, and support. Without her, I would never have finished this book.

about this book
POJOs in Action is a practical guide to using POJOs and lightweight frameworks to
develop the back-end logic of enterprise Java applications. These technologies are
important because they dramatically simplify how you build an application’s busi-
ness and persistence tiers. This book covers key lightweight frameworks: Spring,
JDO, Hibernate, and iBATIS. It also covers EJB 3, which embraces POJOs and
some of the characteristics of lightweight frameworks.

 In this book you will learn how to apply test-driven development and object
design to enterprise Java applications. It illustrates how to develop with POJOs and
lightweight frameworks using realistic use cases from a single example application
that is used throughout the book. It even implements the same use case using mul-
tiple approaches so that you can see the essential differences between them.

 A key message of POJOs in Action is that every technology has both benefits
and drawbacks. This book will teach you when to use—and when not to use—
each of the frameworks. For example, although the emphasis is on the Spring
framework and POJOs, this book also describes when it makes sense to use EJBs.
It explains when to use an object-oriented design and an object/relational map-
ping (ORM) framework and when to use a procedural design and SQL directly.
This sets POJOs in Action apart from many other books that blindly advocate the
use of their favorite framework.

 Enterprise Java frameworks are constantly evolving. While I was writing this
book, all of the frameworks I describe had several releases. EJB 3 appeared, albeit
xxiii

xxiv ABOUT THIS BOOK
in draft form. And between the time this book is printed and the time you read it,
some enterprise Java frameworks will have evolved further yet. But the good news
is that this book will remain relevant. POJOs and nonintrusive lightweight frame-
works are here to stay.

 Regardless of how the frameworks evolve, there are some key concepts that will
not change. First, it’s vital that you objectively evaluate the pros and cons of a
framework and not be swayed by clever marketing. Second, POJOs and nonintru-
sive frameworks are a good thing. You want to avoid coupling your business logic
to an infrastructure framework, especially if it slows down the edit-compile-debug
cycle. Third, testing is essential. If you don’t write tests, then you can’t be sure that
your application works. And you must be able to write tests, so designing for test-
ability is also important. Finally, as Albert Einstein said, “Everything should be
made as simple as possible, but not simpler.”

Roadmap

This book consists of four parts. Part 1 is an overview of POJOs and lightweight
frameworks and the key design decisions you must make when developing an
enterprise Java application. It begins with chapter 1, which introduces the con-
cepts of POJOs and lightweight frameworks. It’s here you will learn about the key
differences between POJO design and an old-style EJB 2 design. This chapter
describes the benefits of an object-oriented design. You will explore the design of
a simple application that persists POJOs with Hibernate and makes them transac-
tional with Spring.

 Chapter 2 describes the design decisions that you must make when develop-
ing the back-end logic of an enterprise Java application. Some decisions are
between lightweight frameworks and EJBs. Other decisions are between particu-
lar lightweight frameworks, such as whether to access the database using an
ORM framework or to execute SQL directly using iBATIS. There are also deci-
sions that you need to make regardless of which technology you use, such as how
to organize the business logic and handle database concurrency. This chapter
provides an overview of design decisions you must make along with the options
available to you. We also introduce the example application and its use cases
that appear throughout the book as we explore the design options.

 Part 2 describes one simple yet very effective approach to designing enter-
prise Java applications. It’s an approach that’s applicable to many enterprise Java
applications. The design implements the business logic with an object-oriented
domain model. It persists objects with an ORM framework such as JDO or
Hibernate, and it encapsulates the business logic with a POJO façade instead of

ABOUT THIS BOOK xxv
an EJB session façade. Because of its many benefits, including ease of develop-
ment and testing, it’s the approach I prefer to use whenever possible.

 The first step in applying this design is to develop a domain model. A
domain model is an excellent way to tackle the complex business logic found in
many enterprise Java applications. Chapter 3 describes how to implement busi-
ness logic using a POJO domain model. You will learn about the structure of
domain models and the benefits and drawbacks of using one. We explain how
you can identify the domain model’s classes, fields, and relationships by analyz-
ing the application’s requirements and talking with the business experts. We
then show you how to implement domain services and entities using test-driven
development techniques. You will learn how to use mock objects to test the
domain model without the database, which simplifies testing considerably. This
chapter uses the Place Order use case from the example application to illustrate
how to develop a domain model

 Once you have developed a domain model, you need to persist it. Usually, the
best way to do that is to use an ORM framework, which transparently maps your
objects to the database. Chapter 4 provides an overview of ORM frameworks. In
this chapter you will learn the strategies for overcoming the impedance mismatch
between a database schema and domain model. We describe how to map a
domain model’s classes, fields, and relationships to a database schema, and we list
the key features of an ORM framework. You will learn effective testing strategies
for a persistence layer. The chapter introduces Hibernate and JDO, which are two
popular ORM frameworks, and describes how to use the Spring ORM classes to
implement the application classes that access the database.

 JDO is an ORM standard from Sun, and at the time of this writing version 2 of
the specification was close to completion. Chapter 5 explains how to use JDO 2 to
persist the domain model developed in chapter 3. We describe issues you will
encounter and the decisions you must make when using JDO. You will learn how
to persist objects with JDO and how to implement domain model repositories
(data access objects) using Spring’s JDO support classes. We explain how to test a
JDO persistence layer effectively and list some of the ways you can improve the
performance of a JDO application.

 Chapter 6 describes how to persist a domain model developed earlier in
chapter 3 using Hibernate, an extremely popular open source framework. You
will learn about the various issues and limitations you will encounter when using
Hibernate. We explain how to implement repositories with Spring’s Hibernate
support classes. In addition, you will learn how to test a Hibernate persistence

xxvi ABOUT THIS BOOK
layer effectively and examine some of the ways you can improve the perfor-
mance of a Hibernate application.

 Encapsulating the business logic is the final step in this process. The stan-
dard EJB approach is to use an EJB session façade and to return DTOs to the
presentation tier. But developing EJBs and writing DTOs can be pretty tedious.
Fortunately, there is a better way. Chapter 7 describes how to encapsulate the
business logic with a POJO façade, which is a lot easier to develop and test. You
will learn how the Spring framework provides a much more convenient way to
have declarative security and transactions. Moreover, you’ll learn how to use
what are known as detached JDO and Hibernate objects to return data to the
presentation tier and thereby eliminate the need to write many DTOs.

 The approach described in part 2 is an effective way to design business logic
and access the database. But it’s not the only way. Part 3 offers alternative
approaches to designing the business and persistence tiers of an enterprise
application. Chapter 8 describes how you can dispense with the façade if the
business and presentation tiers are running in the same JVM. Although expos-
ing the domain model to the presentation tier might sound like heresy, doing so
has its benefits. Since there is no façade, there is less code to write and main-
tain. It also avoids some of the potential problems with using detached objects.
But as you will discover, in order to use this approach you must solve some tricky
database connection and transaction management issues.

 I’m a great fan of implementing the domain logic using an object-oriented
design and persisting the objects using an ORM framework. But sometimes it
doesn’t make sense to use this approach. In chapter 9 you will learn when you
should consider implementing the business logic using a procedural design. We
describe how to develop a procedural business logic starting from a use case and
how to structure it in a way that makes it easier to maintain. You will learn how
to access the database using Spring’s iBATIS support classes.

 Dissatisfaction with EJB motivated the Java community to adopt alternative
frameworks such as Spring, Hibernate, and JDO. In response, EJB has evolved
and embraced many POJO and lightweight framework concepts. Chapter 10
takes a look at EJB 3 and compares it with JDO, Hibernate, and Spring. You will
explore the benefits and drawbacks of EJB 3. We describe how to use EJB 3 to
persist the domain model developed earlier in chapter 2 and expose some signif-
icant limitations. We also look at implementing the session façade developed in
chapter 7 as an EJB 3 session bean. You will learn how to use EJB 3 dependency
injection to assemble an application. This chapter also explains how to integrate
EJB 3 and Spring dependency injection.

ABOUT THIS BOOK xxvii
 Part 4 of this book looks at some important database-related issues that you
must address when developing an enterprise Java application. It begins with
chapter 11, which examines implementing search screens that let the user enter
search criteria and page through the matching results. Implementing search
screens can be challenging. The application must be able to efficiently query the
database and allow the user to page through a large result set. It must also
dynamically generate queries in a maintainable way. In this chapter, you will
learn how to implement dynamic paged queries using iBATIS, JDO, and Hiber-
nate, and when you might want to use Hibernate and JDO native SQL queries.

 You also have to deal with database concurrency. Enterprise applications have
multiple users and background tasks, which means that sometimes multiple
database transactions will attempt to access the same data simultaneously. In
chapter 12, you will learn how to handle concurrent accesses at the database
transaction level. We describe how to handle database concurrency in iBATIS,
JDO, and Hibernate applications, and how AOP can provide a simple way to
recover from database concurrency failures.

 Chapter 13 extends the concepts described in chapter 12 to handle database
concurrency across a sequence of transactions. Many web applications have edit-
style use cases that allow users to edit data in the database. The code that imple-
ments these use cases typically requires one database transaction to read the
data and another to update. In chapter 13, you will learn how to handle data-
base concurrency in edit-style use cases. We describe the various options and
detail their respective benefits and drawbacks.

Who should read this book?

If you are a developer or architect who has mastered the basics of enterprise Java
development and you want to learn how to use POJOs and lightweight frame-
works effectively, this book is for you.

Code conventions

All source code in listings or in text is in a fixed-width font like this to sepa-
rate it from ordinary text. We make use of Java and XML but we try to adopt a
consistent approach. Class and method names, XML elements, and attributes in
text are presented using this same font.

 In many cases, the original source code has been reformatted: we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases even this was not enough, and listings include line-continuation
markers. Additionally, comments have been removed from the listings. Where

xxviii ABOUT THIS BOOK
appropriate, we’ve also cut implementation details that distract rather than help tell
the story, such as JavaBean setters and getters, and import statements.

 Code annotations accompany many of the listings, highlighting important con-
cepts. In some cases, numbered bullets link to explanations that follow the listing.

UML diagrams

This book uses some simple UML class diagrams and sequence diagrams to
describe designs visually. You don’t need to know UML to understand these dia-
grams, but if you’re interested, see www.uml.org/ for more information.

Downloads

The complete source code for this book is freely available from www.man-
ning.com/crichardson. There you will find complete instructions on how to
install and run each of the examples. The download package contains the source
code as well as instructions for accessing the external dependencies, development
environment, and build scripts.

Software requirements

The examples in this book depend on the frameworks shown in table 1. This table
lists the version that we used and where you can download it. With the exception
of Kodo JDO, all of the frameworks are open source.

Table 1 Frameworks used in this book

Framework Version URL

Hibernate 3.0 www.hibernate.org

Spring 1.2.3 www.springframework.org

Kodo JDO (commercial) 3.3 www.solarmetric.com

JBoss EJB 3 Beta www.jboss.org

iBATIS 2.0.6 http://ibatis.apache.org

HSQLDB 1.7.2 www.hsqldb.org/

JMock 1.0.1 www.jmock.org

JUnit 3.8.1 www.junit.org

JPOX JDO 1.1 beta4 www.jpox.org

ABOUT THIS BOOK xxix
For the latest information on the dependencies, check out www.manning.com/
crichardson.

Author Online

Purchase of POJOs in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/crichard-
son. This page provides information on how to get on the forum once you are reg-
istered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaning-
ful dialogue between individual readers and between readers and the author can
take place. It is not a commitment to any specific amount of participation on the
part of the author, whose contribution to the book’s forum remains voluntary
(and unpaid). We suggest you try asking the author some challenging questions,
lest his interest stray!

 The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s website as long as the book is in print.

About the author

Chris Richardson is a developer, architect, and mentor with over 20 years of expe-
rience. He runs a consulting company that helps development teams become
more productive and successful by adopting POJOs and lightweight frameworks.
Chris has been a technical leader at a variety of companies, including Insignia
Solutions and BEA Systems. Chris holds a BA and MA in computer science from
the University of Cambridge in England. He lives in Oakland, California, with his
wife and three children.

about the title
By combining introductions, overviews, and how-to examples, the In Action books
are designed to help learning and remembering. According to research in cogni-
tive science, the things people remember are things they discover during self-
motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play,
and, interestingly, re-telling of what is being learned. People understand and
remember new things, which is to say they master them, only after actively explor-
ing them. Humans learn in action. An essential part of an In Action guide is that it
is example-driven. It encourages the reader to try things out, to play with new
code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers
are busy. They use books to do a job or solve a problem. They need books that
allow them to jump in and jump out easily and learn just what they want just when
they want it. They need books that aid them in action. The books in this series are
designed for such readers.
xxx

about the cover illustration
The figure on the cover of POJOs in Action is a “Hombre de Sierra Leone,” a man
from the African country of Sierra Leone. The illustration is taken from a Spanish
compendium of regional dress customs first published in Madrid in 1799. The
book’s title page states:

Coleccion general de los Trages que usan actualmente todas las Nacionas del Mundo des-
ubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R. Obra muy util y en
special para los que tienen la del viajero universal

which we translate, as literally as possible, thus:

General collection of costumes currently used in the nations of the known world, designed
and printed with great exactitude by R.M.V.A.R. This work is very useful especially for
those who hold themselves to be universal travelers

Although nothing is known of the designers, engravers, and workers who colored
this illustration by hand, the “exactitude” of their execution is evident in this
drawing. The “Hombre de Sierra Leone” is just one of many figures in this color-
ful collection. Their diversity speaks vividly of the uniqueness and individuality of
the world’s towns and regions just 200 years ago. This was a time when the dress
codes of two regions separated by a few dozen miles identified people uniquely as
belonging to one or the other. The collection brings to life a sense of isolation
and distance of that period-and of every other historic period except our own
hyperkinetic present.
xxxi

xxxii ABOUT THE COVER ILLUSTRATION
 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of
the computer business with book covers based on the rich diversity of regional life
of two centuries ago‚ brought back to life by the pictures from this collection.

Part 1

Overview of POJOs
and lightweight frameworks

In part 1, you’ll get an overview of developing with plain old Java objects (POJOs)
and lightweight frameworks such as Spring, Hibernate, and JDO. In chapter 1,
“Developing with POJOs: faster and easier,” we’ll explore the basics of POJOs and
lightweight frameworks and how they differ from Enterprise JavaBeans. As the title
implies, you’ll see how POJOs and lightweight frameworks make development eas-
ier and faster. We’ll look at a simple design that uses Hibernate for persistence and
the Spring framework for transaction management and application assembly.

In chapter 2, “J2EE design decisions,” we’ll look at some of the key decisions
that you must make when developing enterprise Java applications, including
when to use the POJO approach. You’ll learn about the different ways you can
organize and encapsulate business logic, access databases, and handle database
concurrency. The options described in this chapter are explored in detail in the
rest of the book. You’ll see an example of how a project team might go about mak-
ing these design decisions for their application. This chapter also introduces the
example application that is used throughout the book.

Developing with POJOs:
faster and easier
This chapter covers
■ Comparing lightweight frameworks and EJBs
■ Simplifying development with POJOs
■ Developing an object-oriented design
■ Making POJOs transactional and persistent
3

4 CHAPTER 1

Developing with POJOs: faster and easier
Sometimes you must use a technology for a while in order to appreciate its true
value. A few years ago I had to go out of the country on a business trip, and I
didn’t want to risk missing episodes of my favorite show. So, rather than continu-
ing to struggle with the timer function on my VCR, I bought a TiVo box. At the
time I thought it was simply going to be a much more convenient and reliable way
to record programs. The TiVo box certainly made it easy to record a show, but
before long it completely changed how I watched television. In addition to being
able to pause live TV, I was able to watch my favorite shows when I wanted and
without commercials.

 I had a similar experience with plain old Java objects (POJOs), Hibernate, and
Spring. I was part of a team developing a server product that had a “classic” Enter-
prise JavaBeans (EJB) architecture: the business logic consisted of session beans
and entity beans. EJB definitely helped by handling infrastructure issues such as
transaction management, security, and persistence—but at a high price. For
example, we endured long edit-compile-debug cycles caused by having to deploy
the components in the application server. We also jumped through all kinds of
hoops in order to implement a domain model with entity beans. But somehow we
accepted all of this pain as normal.

 The final straw was when we were faced with having to support the product on
two application servers. Rather than endure the lack of portability of EJB container-
managed persistence (CMP) we decided to be adventurous and use a portable per-
sistence mechanism that I was hearing a lot about: Hibernate. Hibernate worked
the same way on both application servers and eliminated the need to maintain two
separate but equivalent sets of EJB CMP deployment descriptors. But before long we
discovered other, much more important benefits of Hibernate. It enabled us to
implement a more elaborate POJO domain model in the next version of the prod-
uct. It sped development by allowing the domain model to be tested without an
application server or a database. And soon after we discovered the Spring frame-
work, which enabled us to create a more loosely coupled architecture consisting of
easy-to-test POJO services. In hindsight, it’s amazing that we accomplished as much
as we did with the old architecture.

 POJOs in Action describes how POJOs and lightweight technologies such as
Spring, Hibernate, and Java Data Objects (JDO) make it easier and faster to
develop testable and maintainable applications. You will learn how object-
oriented design goes hand in hand with POJOs and how to endow POJOs with the
characteristics that enterprise applications require, such as transactions and per-
sistence. It describes how to use Spring for transaction management and Hiber-
nate, JDO, EJB 3, and iBATIS for persistence.

The disillusionment with EJBs 5
 Much of this book focuses on alternatives to EJBs because they frequently offer
better characteristics: good object-oriented design, testability, less complexity, eas-
ier maintenance, and a raft of other benefits. However, it’s important to remem-
ber that EJBs are sometimes the right tool for the job, which is why chapter 10 is
about using EJB 3. The key is to be conscious of the options and to make explicit
informed decisions rather than slavishly following dogma.

1.1 The disillusionment with EJBs

This book isn’t a screed about why you shouldn’t use “traditional” Java 2 Enter-
prise Edition (J2EE) architecture and design. It is sometimes the best tool for the
job, and later on in this book I describe when you should use it. However, today
many developers use it for applications for which it is ill suited. Let’s briefly review
the history of EJBs and discover why the Java development community’s initial
enthusiasm for them has turned into disillusionment. After that, I will describe an
alternative approach to designing an enterprise Java application that uses POJOs.

1.1.1 A brief history of EJBs

EJB is the Java standard architecture for writing distributed business applications.
It’s a framework that provides a large number of useful services and handles some
of the most time-consuming aspects of writing distributed applications. For exam-
ple, EJB provides declarative transactions, which eliminate the need to write trans-
action management code. The EJB container automatically starts, commits, and
rolls back transactions on behalf of the application. Automatically handling trans-
actions was a huge innovation at the time and is still a vital service. In addition,
business logic implemented using EJBs can participate in distributed transactions
that are started by a remote client. EJBs also provide declarative security, which
mostly eliminates the need to write security code, which is another common
requirement handled by the application server. Entries in the bean’s deployment
descriptor specified who could access a particular bean.

 EJB version 1.0 was released in 1998. It provided two types of enterprise beans:
session beans and entity beans. Session beans represent either stateless services or
a stateful conversation with a client. Entity beans represent data in a database and
were originally intended to implement business objects. EJB 1.0 fulfilled its
mandate by insulating the application developer from the complexities of
building distributed enterprise systems. EJB 2 refined the EJB programming
model. It added message-driven beans (which process Java Message Service, or
JMS, messages) as well as enhanced entity beans to support relationships managed

6 CHAPTER 1

Developing with POJOs: faster and easier
by the container. The evolution continues in EJB 3 (described later in this
chapter), which simplifies the programming model considerably by enabling
POJOs to be EJBs.

1.1.2 A typical EJB 2 application architecture

Let’s look at an example of a typical EJB 2 application architecture. Imagine that
you work for a bank and you have to write a service to transfer money between two
accounts. Figure 1.1 shows how you might use EJB to implement the money trans-
fer service.

 The business logic consists of the TransferService EJB and data access objects
(DAOs). The TransferService EJB is a session bean that defines the interface that
the business logic exposes to the presentation tier. It also implements the busi-
ness logic.

 The TransferService EJB calls the AccountDAO to retrieve the two accounts, and
performs any necessary checks and other business logic. For example, it verifies
that fromAccount contains sufficient funds and will not become overdrawn. The
TransferService EJB calls AccountDAO again to save the updated accounts in the
database. It records the transfer by calling TransactionDAO. The TransferService

TransferResult transfer(fromAccountId, toAccountId, amount)

<<session bean>>
TransferService

AccountDTO loadAccount(accountId)
saveAccount(AccountDTO)

AccountDAO
<<dto>>

TransferResult
createTransaction()
findRecentTxns()

TransactionDAO

accountId
balance

AccountDTO

txnId
date

<<dto>>
Transaction

Details

Figure 1.1 The money transfer service implemented using a typical EJB-based design

The disillusionment with EJBs 7
EJB returns a TransferResult, which is a DTO that contains the AccountDTOs and
their recent transactions. It is used by the presentation tier to display a web page to
the customer.

 The DAOs, which are implemented using JDBC, provide methods for accessing
the database. This application could also use entity beans instead of DAOs to
access the database. That is, after all, the role of entity beans within the J2EE
architecture. However, for reasons I describe later, EJB 2 entity beans have several
drawbacks and limitations. As a result, many J2EE applications use DAOs instead
of EJB 2 entity beans.

 The class design and their relationships are simple. I haven’t shown the XML
deployment descriptors, which are used to configure the EJB, but Transfer-
Service is ready to be invoked remotely and to participate in distributed transac-
tions. But despite its apparent simplicity (and sometimes because of it), several
serious problems lurk within.

1.1.3 The problems with EJBs

Like many other Java developers, I enthusiastically adopted EJBs and spent several
years writing applications whose design was similar to the one you just saw. I was so
excited about using the new standard that I thought nothing of abandoning the
object-oriented design skills I’d spent the previous decade learning. I was more
than happy to write lots of code and XML configuration files just to do the sim-
plest things. I found ways to pass the time while my code deployed. After all, isn’t
enterprise application development meant to be challenging?

 It is certainly true that some aspects of developing enterprise applications are
challenging, such as complex and changing requirements and the need to scale and
have high throughput and availability. However, while EJB solves some problems
with developing enterprise applications, it does not live up to one of its key goals:
making it easy to write applications. Ironically, in order to be a competent EJB devel-
oper you need to know how to solve problems that are caused by EJB. An excellent
book that tackles the shortcomings of EJB is Bitter EJB by Bruce Tate [Tate 2003].
Other books address the complexity of building effective EJB applications, such as
Core J2EE Patterns [Alur 2003] and EJB Design Patterns [Marinescu 2002], which con-
tains patterns to help make sense of EJB and solutions to problems rather than pat-
terns for improving the design of software.

 Although these books help developers grapple with EJB and learn how to use it
effectively, they don’t directly address the two fundamental problems with EJBs.
The first is that EJBs encourage developers to write procedural-style applications.
The second problem is that the cumbersome nature of the development process

8 CHAPTER 1

Developing with POJOs: faster and easier
when using EJBs doesn’t allow developers to take advantage of many of the best
practices used for “normal” Java development.

The shortcomings of procedural design
There are two main ways to organize business logic: procedural or object-
oriented. The procedural approach organizes the code around functions that
manipulate separate simple data objects. In procedural architectures, data struc-
tures are populated, passed as parameters to functions, and returned to the caller.
The relationship between the data and the operations is very loosely defined, and
wholly maintained by the developer. Prior to object-oriented languages, this style
of programming dominated software development, and was featured in C, Pascal,
and other languages.

 By contrast, the object-oriented approach organizes code around objects that
have state and behavior and that collaborate with other objects. The data struc-
tures and operations are defined in one language construct, co-locating the data
and the operations on the data. The relationship (and state) between the data
and the operations is maintained by the language. An object-oriented design is
easier to understand, maintain, extend, and test than a procedural design.

 Despite the benefits of an object-oriented design, most J2EE applications,
including the one shown in figure 1.1, are written in a procedural style. In our
example, all of the business logic is concentrated in the TransferService EJB,
which consists of the transfer() method and possibly one or more helper meth-
ods. None of the objects manipulated by the TransferService EJB implement any
business logic. These objects exist to provide plumbing and services to the
TransferService EJB. The DAOs are wrappers around JDBC, and the remaining
objects (including the entity beans) are simple data objects. Even though this
business logic is written in Java, which is an object-oriented language, this design
fits the definition of procedural code exactly.

 The procedural design style isn’t a problem if the business logic is simple, but
business logic has a habit of growing in complexity. As the requirements change
and the business logic has to implement new features, the amount of code in the
EJB steadily increases. For example, in order to add a new kind of overdraft policy
you would have to add yet more code to the TransferService EJB to implement
that new policy. Even if each enhancement only adds a few lines of code, EJBs that
started out quite simple over time can grow into large complex beasts, such as the
ones that I encountered on one early J2EE project that were each many hundred
of lines of code.

The disillusionment with EJBs 9
 EJBs like these that contain large amount of code cause several problems. The
lack of modularity makes them difficult to understand and maintain because it’s
hard to find your way around long methods and large classes. They can be
extended to support new requirements only by adding more code, which makes
the problem worse. Complex EJBs are also very difficult to test because they lack
the subcomponents to test in isolation. But if this procedural design style has
these problems, why is it so common in J2EE application?

Why J2EE encourages developers to write procedural code
There are a couple of reasons why J2EE developers often write procedural-style
code rather than developing an object model. One reason is that the EJB specifi-
cation makes it seductively easy. Although the specification does not force you to
write this type of code, it lays down a path of least resistance that encourages state-
less, procedural code. When implementing new behavior, you don’t have to worry
about identifying classes and assigning responsibilities as you would if you were
designing a real object model. Instead, you can write a new session bean method
or add code to an existing one.

 The second reason why J2EE developers write procedural-style code is that it is
encouraged by the EJB architecture, literature, and culture, which place great
emphasis on EJB components. EJB 2 components are not suitable for implementing
an object model. Session beans and message-driven beans are monolithic, heavy-
weight classes that cannot be used to implement a fine-grained object model. Nor
can they represent business objects that are stored in a database. The best way to
use them in an application is to encapsulate an object model: the Session Façade and
Message Façade patterns.

 EJB 2 entity beans, which are intended to represent business objects, have numer-
ous limitations that make it extremely difficult to use them to implement a persis-
tent object model. This is why I didn’t use them in our earlier example. EJB 2 entity
beans support some kinds of relationships, but not inheritance. Entity beans do not
support recursive calls or “loopback” calls, which are common in an object model
and occur when object A calls object B, which calls object A. We’ll discuss other lim-
itations of entity beans in a moment. Entity beans have so many limitations that it’s
amazing that developers have used them successfully. This is a fundamental prob-
lem with the preferred J2EE architecture. Each framework creates a path of least
resistance for its use. It is possible to diverge from the path, but it goes against the
grain of the framework and takes a great deal of effort. The path of least resistance
in J2EE and EJB leads inexorably toward procedural code.

10 CHAPTER 1

Developing with POJOs: faster and easier
 As a result, it has been difficult to do any true object-oriented development in
a J2EE application. Furthermore, this procedural design style is so ingrained in
the J2EE culture that it has even carried over into newer, non-EJB ways of develop-
ing J2EE applications. Some developers still view persistent objects simply as a
means to get data in and out of the database and write procedural business logic.
They develop what Fowler calls an “anemic domain model” [Fowler Anemic]. Just
as anemic blood lacks vitality, anemic object models only superficially model the
problem and consist of classes that implement little or no behavior

The pain of EJB development
Another problem with EJBs is that development and testing are painfully tedious
for the following reasons:

■ You must deal with annoyingly long edit-compile-debug cycles—Because EJBs are
server-side components, you must deploy them in the EJB container, which
is a time-consuming operation that interrupts your train of thought. Quite
often the time to redeploy a component crosses the 10-second threshold, at
which point you might be tempted to do something else, like surf the Web
or IM a friend. The impact on productivity is particularly frustrating when
doing test-driven development, where it is desirable to run the tests fre-
quently, every minute or two. Test-driven development and unit testing are
common best practices for Java development made difficult by the infra-
structure required when developing EJBs.

■ You face a lack of separation of concerns—EJB often forces you to solve several dif-
ficult problems simultaneously—business logic design, database schema
design, persistence mapping, etc.—rather than allowing you to work on one
problem at a time. Not only is this mentally overwhelming but it also adds to
the already long edit-compile-debug cycle. When you change a class, you
might have to update the database schema before you can test your changes.

■ You must write a lot of code to implement an EJB—You must write a home inter-
face, a component interface, the bean class, and a deployment descriptor,
which for an entity bean can be quite complex. In addition, you must write
a number of boilerplate bean class methods that are never actually called
but that are required by the interface the bean class implements. This code
isn’t conceptually difficult, but it is busywork that you must endure.

■ You have to write data transfer objects—A data transfer object (DTO) is a dumb
data object that is returned by the EJB to its caller and contains the data the
presentation tier will display to the user. It is often just a copy of the data

The disillusionment with EJBs 11
from one or more entity beans, which cannot be passed to the presentation
tier because they are permanently attached to the database. Implementing
the DTOs and the code that creates them is one of the most tedious aspects
of implementing an EJB.

Developing EJBs can be a slow, mind-numbing process. While you can get used to
it and find ways to occupy your time while waiting for components to deploy, it isn’t
a good way to develop software. As I mentioned earlier, the nature of J2EE develop-
ment with EJB precludes many of the best practices common in other types of Java
development. Because the components must run in the application server in order
to access the services it provides, an incremental development strategy that fre-
quently executes the edit-compile-debug cycle is difficult. Eventually, many enter-
prise Java developers have become painfully aware of these limitations and have
started to ask questions: Does the development I’m doing require all these services
for which I’m paying such a high price? Is this the right tool for the job?

1.1.4 EJB 3 is a step in the right direction

The EJB standard isn’t frozen in amber. The designers of the specifications at Sun
listen to developers and are modifying the EJB specification accordingly. The
main goal of the newest EJB 3 standard is to simplify EJB development. It addresses
some of the perceived problems and issues with the current specification:

■ EJBs are POJOs, there is a lot less boilerplate code to write, and the code is
less coupled to the application server environment.

■ EJB 3 entity beans are intended to be the standard Java persistence mecha-
nism and run in both J2EE and J2SE environments.

■ EJB 3 supports the use of Java 5 annotations instead of difficult-to-write
deployment descriptors to specify such things as transaction attributes, secu-
rity attributes, and object/relational mapping.

■ Entity beans support inheritance (finally!), making it possible to implement
a true object model.

■ EJB 3 also has reasonable defaults for much of the deployment information,
so there is a lot less of it to write.

■ EJB 3 entity beans can be used to return data to the presentation tier, which
eliminates the need to write DTOs.

EJB 3 still has limitations. For example, it forces components into three categories—
session beans, entity beans, and message-driven beans—even though in a typical

12 CHAPTER 1

Developing with POJOs: faster and easier
object model there are classes that do not fall into one of these three categories. As
a result, many classes are unable to use the services provided by the EJB 3 container.
Also, the June 2005 public draft of the specification still had only limited support
for collection classes. In addition, there is no guarantee that the EJB 3 containers
will provide fast and painless deployment of EJBs. As a result, EJB 3 still appears to
be inferior to the lightweight technologies such as JDO, Hibernate, and Spring that
I describe later in this chapter.

 Despite its limitations, it is extremely likely that EJB 3 will be widely used for the
simple reason that it is part of the J2EE standard. It is also important to remember
that EJB is an appropriate implementation technology for two types of applications:

■ Applications that use distributed transactions initiated by remote clients

■ Applications that are heavily message-oriented and need message-driven
beans

But for many other applications superior alternatives exist that are considerably
easier to use. The remainder of this book focuses on those alternatives: POJOs and
lightweight technologies such as Spring, Hibernate, and JDO.

1.2 Developing with POJOs

Long before the EJB 3 specification was written, some developers disillusioned
with EJB started to look for alternative frameworks. POJOs are an especially com-
pelling alternative to EJBs. A POJO is simply a Java object that does not implement
any special interfaces such as those defined by the EJB framework. The name was
coined by Fowler, Rebbecca Parsons, and Josh MacKenzie [Fowler POJO] to give
regular Java objects an exciting-sounding name. Later in this section you will see
how this simple idea has some surprisingly important benefits.

 However, POJOs by themselves are insufficient. In an enterprise application you
need services such as transaction management, security, and persistence, which
were previously provided by the EJB container. The solution is to use the increas-
ingly popular so-called “lightweight” frameworks that replace some “heavyweight”
parts of the J2EE stack. They do not completely replace the J2EE stack but can be
used in combination with some parts of it to provide important enterprise services.

 The four lightweight frameworks that I describe in this book are Hibernate, JDO,
iBATIS, and Spring. Except for JDO, which is a specification, they are open source
projects, which have helped drive the adoption of POJOs and lightweight frameworks
by the community. Hibernate and JDO are persistence frameworks, which map
POJOs to a relational database. They are layered on top of JDBC and significantly

hong
It is also important to rememberthat EJB is an appropriate implementation technology for two types of applications:■ Applications that use distributed transactions initiated by remote clients■ Applications that are heavily message-oriented and need message-drivenbeans

Developing with POJOs 13
increase developer productivity. iBATIS is also layered on top of JDBC, but it maps
POJOs to SQL statements and is a very convenient way to execute SQL statements.
The Spring framework has a wide range of features that make it easier to use than
EJB, including the equivalent of container-managed transactions for POJOs.

 An important feature of these technologies is that they are nonintrusive.
Unlike EJBs, they provide transactions and persistence without requiring the
application classes to implement any special interfaces. Even when your applica-
tion’s classes are transactional or persistent, they are still POJOs, which means that
you continue to experience the benefits of POJOs that I describe in this chapter.

 Some excellent books are available that describe these frameworks in depth:
Hibernate in Action [Bauer 2005], Spring in Action [Walls 2005], iBATIS in Action
[Begin, forthcoming], and Java Data Objects [Russell 2003]. You do not need to
read these books to understand and benefit from this book. But to apply what you
learn here you do need to read them to learn the details.

 In this section I will provide an overview of how to use POJOs and lightweight
frameworks to redesign the money transfer service and make it easier to develop,
test, and maintain. This new design is object-oriented POJO-based instead of a
procedural EJB-based. It accesses the database using a persistence framework that
is layered on top of JDBC instead of using JDBC directly. The business logic is
encapsulated by a POJO façade instead of a session bean, and transactions are
managed by the Spring framework instead of the EJB container. The business
logic returns real business objects to the presentation tier instead of DTOs. The
application is assembled by passing a component’s dependencies as setter or con-
structor arguments instead of the component using Java Naming and Directory
Interface (JNDI) lookups. Because the design is object-oriented and uses these
lightweight technologies, it is much more developer-friendly than the EJB version
we saw earlier.

 Table 1.1 summarizes the differences between the two designs.

Table 1.1 Comparing classic EJB and POJO approaches

Classic EJB approach POJO approach

Organization Procedural-style business logic Object-oriented design

Implementation EJB-based POJOs

Database access JDBC/SQL or Entity beans Persistence framework

Returning data to the
presentation tier

DTOs Business objects

14 CHAPTER 1

Developing with POJOs: faster and easier
Don’t worry if you are not familiar with all of these terms. In this section, I’ll
examine each difference and explain and justify the POJO approach. You will see
how to develop business logic using the POJO approach. I use the money transfer
application from section 1.1.2 as an example.

1.2.1 Using an object-oriented design

Rather than structuring the money transfer example around methods such as
transfer() and its helper methods, the code should be structured around an
object model, which is a collection of classes that typically corresponds to real-
world concepts. For example, in the money transfer application, the object model
consists of classes such as Account, OverdraftPolicy, and BankingTransaction. In
addition, there is a TransferService that coordinates the transfer of money from
one account to another. Figure 1.2 shows the design.

Transaction management EJB container-managed
transactions

Spring framework

Application assembly Explicit JNDI lookups Dependency injection

Table 1.1 Comparing classic EJB and POJO approaches (continued)

Classic EJB approach POJO approach

debit(amount)
credit(amount)

balance

Account

date

Banking
Transaction

allow(Account, amount)

<<interface>>
OverdraftPolicy

NoOverdraft
Policy

Limited
Overdraftamount

Transfer
Transaction

from

to

BankingTransaction transfer(fromId, toId, amount)

TransferService

Figure 1.2 An object model for the money transfer application

Developing with POJOs 15
An Account maintains its balance and has an OverdraftPolicy, which determines
what happens when the account is about to become overdrawn. OverdraftPolicy is
an example of a Strategy pattern [Gang of Four] and there are two implementations
of OverdraftPolicy: one for each type of real-world policy. Better yet, an Overdraft-
Policy could encapsulate a rules engine and thereby enable the business rules for
overdrafts to be changed dynamically. TransferTransaction, which is a subclass of
BankingTransaction, records the transfer of money between two accounts.

 Using an object-oriented design has a number of benefits. First, the design is
easier to understand and maintain. Instead of consisting of one big class that does
everything, it consists of a number of small classes that each have a small number
of responsibilities. In addition, classes such as Account, BankingTransaction, and
OverdraftPolicy closely mirror the real world, which makes their role in the
design easier to understand.

 Second, our object-oriented design is easier to test: each class can and should
be tested independently. For example, we could write unit tests for Account and
for each implementations of OverdraftPolicy. In comparison, an EJB can only be
tested by calling its public methods, for example, transfer(), which is a lot more
difficult. You can only test the complex functionality exposed by the public meth-
ods rather than test the simpler pieces of the design.

 Finally, the object-oriented design in figure 1.2 is easier to extend because it
can use well-known design patterns, such as the Strategy pattern and the Template
Method pattern [Gang of Four]. Adding a new type of overdraft policy simply
requires defining a new subclass of OverdraftPolicy. By contrast, extending an
EJB-style procedural design usually requires changing the core code, and rewrit-
ing or chaining procedure calls together.

 As you can see, our object-oriented design has some important benefits. But it
is essential to know when it is not a good choice. Later in this book I describe how
to decide between procedural and object-oriented approaches.

1.2.2 Using POJOs

Once you break free of the constraints imposed by the EJB 2 programming model,
implementing the object model shown in figure 1.2 is easy. Java provides all of the
necessary features, including fine-grained objects, relationships, inheritance, and
recursion. It is straightforward to implement expressive object models like this
one using POJOs and thus benefit from improved maintainability and testability.
Java is an object-oriented language, so it is foolish not to use its capabilities.

 As a bonus, POJOs have these other important benefits:

16 CHAPTER 1

Developing with POJOs: faster and easier
■ Easier development—There is less cognitive load because rather than being
forced to think about everything—business logic, persistence, transactions
etc.—at once you can instead focus on one thing at a time. You can first
design and implement the business logic and then, once that is working,
you can deal with persistence and transactions.

■ Faster development—You can develop and test your business logic outside of
the application server and without a database. You do not have to package
your code and deploy it in the application. Also, you do not have to keep
the database schema constantly in sync with the object model or spend time
waiting for slow-running database tests to finish. Tests can run in a few sec-
onds and development can happen at the speed of thought—or at least as
fast as you can type!

■ Improved portability—You are not tied to a particular implementation tech-
nology. The cost of switching to the next generation of Java technology is
minimized because you have to rewrite only a small amount of code, if any.

I was genuinely surprised by how POJOs changed how I went about development
because I’d become so accustomed to the cumbersome EJB approach. As with the
TiVo box I described earlier, I had to use them before I appreciated their true
value. But now I couldn’t imagine reverting to the old way of working. Of course,
you still need to handle persistence and transactions, which is where lightweight
frameworks come in.

1.2.3 Persisting POJOs

When the time comes to persist the POJOs that implement the business logic,
there are some powerful object/relational mapping frameworks to choose from.
The main ones are JDO, which is a standard from Sun, and Hibernate, which is an
extremely popular open source framework. In addition, the specification for EJB 3
entity beans appears to be potentially quite powerful.

Transparent persistence with JDO and Hibernate
JDO and Hibernate provide transparent persistence, which means that the classes
are unaware that they are persistent. The application just needs to call the persis-
tence framework APIs to save, query, and delete persistent objects. The persis-
tence framework automatically generates the SQL statements that access the
database using an object/relational mapping, which is defined by XML docu-
ments or Java 5 annotations. The object/relational mapping specifies how classes
map to tables, fields map to columns, and relationships map to either foreign keys

Developing with POJOs 17
or join tables. JDO and Hibernate can also run outside of the application server,
which means that you can test your persistent business logic without deploying it
in a server. You can, for example, simply run tests from within your integrated
development environment (IDE).

Encapsulating the calls to the persistence framework
Even though Hibernate and JDO provide transparent persistence, some parts of
an application must call the JDO and Hibernate APIs to save, query, and delete
persistent objects. For example, TransferService must call the persistence frame-
work to retrieve the accounts and create a BankingTransaction. One approach is
for TransferService to call the persistence framework APIs directly. Unfortu-
nately, this would couple TransferService directly to the persistence framework
and the database, which makes development and testing more difficult.

 A better approach is to encapsulate the Hibernate or JDO code behind an inter-
face, as shown in figure 1.3. The persistence framework, which in this example is

debit(amount)
credit(amount)

Account

Banking
Transaction

BankingTransaction transfer(fromId, toId, amount)

TransferService

findAccount(id)

<<interface>>
Account

Repository

Hibernate

createTransaction(…)

<<interface>>
BankingTransaction

Repository

findAccount(id)

Hibernate
Account

Repository

createTransaction(…)

HibernateBanking
Transaction
Repository

Figure 1.3 Using repositories to encapsulate the persistence framework
hides the persistence details from the rest of the application.

18 CHAPTER 1

Developing with POJOs: faster and easier
Hibernate, is encapsulated by the repository classes. Each repository consists of an
interface and a Hibernate implementation class and is responsible for one type of
object. The JDO implementation would be similar.

 In this example, repositories call the Hibernate APIs to access the database.
AccountRepository finds accounts and BankingTransactionRepository creates
BankingTransactions. The TransferService is written in terms of the Account-
Repository and BankingTransactionRepository interfaces, which decouples it
from the persistence framework and the database. By the intelligent use of inter-
faces, you can avoid coupling your domain logic to a particular persistence frame-
work. This will enable you to test the domain model without the database, which
simplifies and accelerates testing. It also enables you to use a different persistence
framework if your needs change. For example, changing this application from
Hibernate to JDO or even EJB 3 is simply a matter of changing the concrete classes
that access the persistence framework. It’s a generally accepted observation that
loosely coupled applications are easier to maintain and test, and you will see
examples of how to do this throughout this book.

1.2.4 Eliminating DTOs

Another way to improve a J2EE application is to eliminate the DTOs, also known as
value objects. A DTO is a simple object consisting of only fields (i.e., no behavior)
and is used to return data from the business tier to the presentation tier. An EJB
application uses DTOs because EJB 2 entity beans cannot be efficiently accessed by
the presentation tier. Each call to an entity bean might be a remote call and/or a
separate database transaction. As a result, they must only be accessed by the ses-
sion façade, which copies data from them into DTOs. The trouble with using
DTOs, however, is that they and the code that creates them are extremely tedious
to develop and can sometimes be a significant portion of a J2EE application.
Hibernate, JDO, and EJB 3 objects do not have this limitation and can be accessed
directly by the presentation tier. As a result, we eliminate many or all of the DTOs
in an application.

Returning domain objects to the presentation tier
There are a couple of ways to return Hibernate, JDO, and EJB 3 objects to the pre-
sentation tier. One option is for the business tier to return objects that are still
persistent. This can be simpler to implement but requires the presentation tier to
manage database connections, which is sometimes neither desirable nor possible.
I will describe this option in more detail in chapter 8.

Developing with POJOs 19
 Another approach, which is described in detail in chapter 7, is for the business
tier to return detached objects. A detached object is a previously persistent object
that is no longer connected to the database. Instead of copying values from a per-
sistent object into a DTO, the business tier detaches the object and returns it to
the persistent tier. This approach eliminates the need for DTOs while keeping all
database accesses in the business tier.

 Different persistence frameworks handle detached objects in different ways. In
Hibernate and EJB 3, objects are automatically detached but the application must
ensure that all of the objects required by the presentation tier are loaded, which
can sometimes require extra calls to the persistence framework. In JDO 2.0 an
application must explicitly detach the required objects by calling a JDO API.

Using a façade to retrieve and detach domain objects
An important design decision is determining which class will be responsible for
calling the persistence framework to retrieve and detach the objects required by
the presentation tier. For example, the money transfer business logic must
retrieve the recent transactions and detach them along with the account objects.
You could make this the responsibility of the TransferService, but doing so would
make it more complicated and couple it to the needs of the presentation tier.
Moreover, because the business tier must sometimes call the persistent framework
to ensure that the domain objects can be returned to the presentation tier, mak-
ing the TransferService call the detachment logic would mix together pure busi-
ness logic with infrastructure details.

 Unless the service is very simple and contains little or no business logic, a bet-
ter option is to retrieve and detach the required objects in a separate class—
TransferFacadeImpl. As figure 1.4 shows, TransferFacadeImpl implements the
TransferFacade interface, which specifies the methods that can be called by the
business logic’s client and plays a role similar to that of an EJB component inter-
face. It returns a TransferResult that contains the domain objects.

 Like the EJB we saw earlier, TransferFacade defines a transfer() method that
returns a TransferResult. It calls TransferService and TransactionRepository,
and creates TransferResult. As you can see, TransferResult is the only DTO in
this example. The rest of the objects returned to the presentation tier are domain
objects. Later in chapter 7, we look at a more elaborate example of a façade.

1.2.5 Making POJOs transactional

Let’s review what we have done so far. We replaced a procedural design with an
object-oriented design, replaced entity beans with POJOs plus a persistence frame-
work (either Hibernate or JDO), and eliminated DTOs. Because of these changes,

20 CHAPTER 1

Developing with POJOs: faster and easier
we have a design that is easier to understand, maintain, and extend. In addition,
the edit-compile-debug cycle is extremely short. We now have an application
where most of the code is sufficiently modular that you can write unit tests. We
haven’t yet discussed how to eliminate the TransferService EJB. Even though it is
a simple class that calls the object model classes, development slows down consid-
erably any time we have to change it because of the deployment requirement.
Let’s see what we can do about that.

 Although session beans support distributed applications, the main reason they
are used in many applications is because they provide container-managed trans-
actions. The EJB container automatically starts a transaction when a business
method is invoked and commits the transaction when the method returns. It
rolls back the transaction if a RuntimeException is thrown. Container-managed
transactions are extremely useful. They free you from writing error-prone code to
manually manage transactions. Consequently, if you want to replace session
beans with POJOs, you should use an equally convenient mechanism to manage
transactions. This naturally takes us to the Spring framework.

BankingTransaction transfer(fromId, toId, amount)

TransferService

BankingTransaction transfer(fromId, toId, amount)

TransferFacadeImpl

findRecentTxns()

<<interface>>
Transaction
Repository

TransferResult transfer(fromId, toId, amount)

<<interface>>
TransferFacade

TransferResultAccount
Banking

Transaction

Figure 1.4 The design of TransferFacade, which encapsulates the business logic and
detaches objects

Developing with POJOs 21
Managing transactions with Spring
There are several lightweight mechanisms for making POJOs transactional. One
very popular framework that provides this capability is Spring. Spring is a power-
ful J2EE application framework that makes it significantly easier to develop enter-
prise Java applications. It provides a large number of features, and I’m only going
to provide a brief overview of a few of them in this chapter. For more information
see Spring in Action [Walls 2005].

 The Spring framework provides an extremely easy-to-use mechanism for mak-
ing POJOs transactional that works in a similar way to container-managed transac-
tions. Spring will automatically begin a transaction when a POJO method is
invoked and commit the transaction when the method returns. It can also roll
back a transaction if an error occurs. Spring can manage transactions using the
application server’s implementation of the Java Transaction API (JTA) if the appli-
cation accesses multiple resources such as a database and JMS. Alternatively,
Spring can manage transactions using the persistence framework or JDBC transac-
tion management APIs, which are simpler and easier to use because they do not
require an application server.

 When using the Spring framework, we can make a POJO transactional by defin-
ing it as a Spring bean, which is simply an object that is instantiated and managed
by Spring. Defining a Spring bean requires only a few lines of XML. The XML is
similar to a deployment descriptor and configures Spring’s lightweight container,
which is a sophisticated factory for constructing objects. Each entry in the XML
file defines the configuration of a Spring bean, which includes its name, its POJO
implementation class, and a description of how to instantiate and initialize it. An
application obtains a bean by calling the Spring bean factory with the name and
expected type of the bean:

BeanFactory beanFactory = …
TransferFacade tf = (TransferFacade)
 beanFactory.getBean("TransferFacade", TransferFacade.class);

This code fragment calls the BeanFactory.getBean() method with Transfer-
Facade as the name of the bean and TransferFacade as the expected class. The
bean factory will throw an exception if a bean with that name does not exist or is
of a different type.

 As well as being a highly configurable way to instantiate objects, a Spring bean
factory can be configured to return a proxy instead of the original object. A
proxy, which is also known as an interceptor, is an object that masquerades as the
original object. It executes arbitrary code before and after invoking the original

22 CHAPTER 1

Developing with POJOs: faster and easier
object. In an enterprise Java application, inter-
ceptors can be used for a number of purposes,
including security, database connection man-
agement, and transaction management.

 In this example application, we can config-
ure the Spring bean factory to wrap Transfer-
Facade with a proxy that manages transactions.
To do that, we must define several beans,
including those shown in figure 1.5. This dia-
gram shows the TransferFacade bean, along
with PlatformTransactionManager, Trans-

actionInterceptor, and BeanNameAutoProxy-
Creator, the Spring classes that make Transfer-
Facade transactional.

 The BeanNameAutoProxyCreator bean wraps
TransferFacade with a TransactionInterceptor, which manages transactions using
the PlatformTransactionManager. The PlatformTransactionManager in this exam-
ple is implemented by the HibernateTransactionManager class, which uses the
Hibernate Transaction interface to begin, commit, and roll back transactions. List-
ing 1.1 shows an excerpt from the XML configuration file that defines these beans.

<beans>

<bean id="TransferFacade"
 class="TransferFacadeImpl">
…
</bean>

<bean id="PlatformTransactionManager"
 class="org.springframework.orm.
bbbbbbbbbb➥ hibernate3.HibernateTransactionManager">
…
</bean>

<bean id="TransactionInterceptor"
 class="org.springframework.transaction.
bbbbbbbbbb➥ interceptor.TransactionInterceptor">
 <property name="transactionManager"
 ref="PlatformTransactionManager"/>
 <property name="transactionAttributeSource"
 value="*=PROPAGATION_REQUIRED"/>
</bean>

Listing 1.1 Configuring Spring transaction management

B Define the
TransferFacade

CDefine the Hibernate
PlatformTransactionManager

D Define the
TransactionInterceptor

BeanName
AutoProxy

Creator

TransferFaçade
Transaction
Interceptor

Platform
Transaction

Manager

Figure 1.5 The Spring bean definitions
required to make TransferFacade
transactional

Developing with POJOs 23

<bean id="BeanNameAutoProxyCreator"
 class="org.springframework.aop.framework.
bbbbbbbbb➥ autoproxy.BeanNameAutoProxyCreator">
 <property name="beanNames">
 <idref bean="TransferFacade"/>
 </property>
 <property name="interceptorNames">
 <list>
 <idref bean="TransactionInterceptor"/>
 </list>
 </property>
</bean>

</beans>

Let’s take a closer look at this listing:

This defines a bean called TransferFacade, which is implemented by the Transfer-
FacadeImpl class.

This defines a bean called PlatformTransactionManager, which is implemented by
the HibernateTransactionManager class that manages transactions using the
Hibernate API.

This defines a bean called TransactionInterceptor, which is implemented by the
TransactionInterceptor class that makes an object transactional. Transaction-
Interceptor intercepts calls to the object and calls a PlatformTransactionManager
to begin, commit, and roll back transactions. It has a transactionManager property,
which specifies which PlatformTransactionManager to use, and a transaction-
AttributeSource property, which specifies which methods to make transactional. In
this example, all method calls are configured to be transactional.

This defines a bean called BeanNameAutoProxyCreator, which wraps Transfer-
Facade with TransactionInterceptor. It has an interceptorNames property, which
specifies the list of interceptors to apply, and a beanNames property, which specifies
the beans to wrap with interceptors.

These bean definitions arrange for the bean factory to wrap TransferFacade with
TransactionInterceptor. When the presentation tier invokes what it thinks is
TransferFacade, TransactionInterceptor is invoked instead. The sequence of
events is shown in figure 1.6.

E

Apply the
TransactionInterceptor
to the TransferFacade

B

C

D

E

24 CHAPTER 1

Developing with POJOs: faster and easier
Let’s look at the sequence of events:

1 The presentation tier calls TransferFacade but the call is routed to Trans-
actionInterceptor.

2 TransactionInterceptor begins a transaction by calling PlatformTransac-
tionManager, which begins a transaction using either the JTA provided by
the application server or the transaction management API provided by the
persistence framework.

3 TransactionInterceptor invokes the real TransferFacadeImpl.

4 The call to TransferFacadeImpl returns.

5 TransactionInterceptor commits the transaction by calling Platform-
TransactionManager.

6 The call to TransactionInterceptor returns.

In step 5 TransactionInterceptor could also roll back the transaction if the
TransferMoney service threw an exception. By default, TransactionInterceptor
emulates EJBs and rolls back a transaction if a RuntimeException is thrown.
However, you can write rollback rules that specify which exceptions should cause
a transaction to be rolled back. Using rollback rules simplifies the application and
decouples it from the transaction management APIs by eliminating code that
programmatically rolls back transactions. This is one example of how the Spring
framework is more flexible than an EJB container.

 Another benefit of using Spring is that you can test your transactional POJOs
without deploying them in the application server. Because code that uses JDO or
Hibernate can also be tested within your IDE, you can often do a lot of development

Presentation
Tier

Transaction
Interceptor

TransferFacade
Impl

1. Call transfer() 3. Call transfer()

4. transfer() returns

Platform
Transaction

Manager

2. Begin transaction 5. Commit transaction

6. transfer() returns

Figure 1.6 Using Spring interceptors to manage transactions

Developing with POJOs 25
without ever starting up an application server. In fact, I often find that the only time
I need to use one is when developing code that uses a service such as JMS that is pro-
vided by the application server. Even when working on the presentation tier I’m
able to use a simpler web container such as Jetty. This is yet another example of how
lightweight frameworks make your life as a developer easier.

The role of AOP in the Spring framework
The technology underlying Spring’s transaction management mechanism is
known as Aspect-Oriented Programming (AOP). AOP is a declarative mechanism
for changing the behavior of an application without requiring any modification to
the application itself. You write rules that specify new code to be executed when
methods are called and, in some cases, fields are accessed or objects instantiated.
In this example the BeanNameAutoProxyCreator arranged for the Transaction-
Interceptor to be executed whenever the TransferFacade was called without any
code changes. AOP is not limited to transaction management, and in this book
you will see examples of interceptors that implement security, manage database
connections, and automatically retry transactions.

 I’m using the Spring AOP implementation in this book for the simple reason
that it provides the AOP interceptors for managing transactions, JDO, and Hiber-
nate connections. It is important to remember that the techniques described in this
book will work equally as well with other lightweight containers such as PicoCon-
tainer [PicoContainer], and other AOP mechanisms like AspectJ [Laddad 2003].
However, as of this writing, Spring provides the best implementation of the features
required by enterprise applications such as the Food to Go application, which is the
example application used throughout the rest of this book.

 The Spring framework is one example of a growing number of technologies
that are compelling alternatives to EJBs. Using Spring AOP provides the same ben-
efits of using EJB session beans but also allows you to use POJOs for your problem
domain. An EJB container provides a large number of services, including transac-
tion management. But is it worth compromising the design of the application to
take advantage of these services—especially if you can implement them using a
technology such as Spring in an à la carte fashion?

1.2.6 Configuring applications with Spring

Most applications consist of multiple components that need to access one another.
A traditional J2EE application uses JNDI as the mechanism that one component
uses to access another. For example, the presentation tier uses a JNDI lookup to
obtain a reference to a session bean home interface. Similarly, an EJB uses JNDI to

26 CHAPTER 1

Developing with POJOs: faster and easier
access the resources that it needs, such as a JDBC DataSource. The trouble with
JNDI is that it couples application code to the application server, which makes
development and testing more difficult. The Spring framework provides POJOs
with a much easier-to-use mechanism called dependency injection, which decouples
application components from one another and from the application server.

 Dependency injection is another powerful feature of Spring’s bean factory.
Spring beans can be configured to depend on other beans, and when Spring
instantiates a bean, it will pass to it any required beans, instantiating them if nec-
essary. Two main types of dependency injection are used with Spring: constructor
injection and setter injection. With constructor injection, the container passes the
required objects to a component’s constructor; with setter injection, the con-
tainer passes the required objects by calling setters.

 Dependency injection was used earlier to wire together the Spring beans—
TransactionInterceptor, PlatformTransactionManager, and BeanNameAutoProxy-
Creator—that provide transaction management. It can also be used to wire
together application components. In the money transfer example, we can config-
ure the TransferFacade bean to depend on TransferService and Transfer-
Service to depend on HibernateAccountRepository and HibernateBanking-
TransactionRepository:

<beans>

…
<bean id="TransferFacade"
 class="TransferFacadeImpl">
 <constructor-arg ref="TransferService"/>
</bean>

<bean id="TransferService"
 class=" TransferServiceImpl">
 <constructor-arg ref="AccountRepository"/>
 <constructor-arg ref="BankingTransactionRepository"/>
</bean>
…
</beans>

The first bean definition specifies that TransferFacadeImpl’s constructor take a
TransferService as a parameter. The second bean definition specifies that Trans-
ferServiceImpl’s constructor be passed AccountRepository and BankingTrans-
actionRepository. When Spring instantiates TransferFacade, it will also instantiate
TransferService, HibernateAccountRepository, and HibernateBankingTrans-

actionRepository. See the online source code, which can be downloaded from

Developing with POJOs 27
http://www.manning.com/crichardson, for the definition of the Hibernate-
AccountRepository, HibernateBankingTransactionRepository, and Hibernate-

ObjectDetacher, along with the configuration of the Hibernate SessionFactory
and the JDBC DataSource.

 Dependency injection is an extremely easy way to configure an application.
Instead of using an object containing code to look up its dependencies, they are
automatically passed in by the bean factory. It doesn’t have to call any application
server APIs. In chapter 7, I’ll show how dependency injection is a useful way of decou-
pling components from one another and the application server environment.

1.2.7 Deploying a POJO application

As I mentioned earlier, one of the great things about POJOs and lightweight
frameworks is that you can do a lot of development without going near an applica-
tion server. Eventually, however, you do need to deploy the application. An appli-
cation that uses Spring for transaction management and Hibernate or JDO for
persistence can often be deployed in a simple web container-only server such as
Jetty, Tomcat, or WebLogic Express, as shown in figure 1.7.

 The application is simply packaged as a web archive file (WAR) and deployed in
the server’s web container. It would use either a JDBC connection pool provided by

Application Server

Web Container

Business Tier

Presentation Tier

Servlets JSP
HTTP

Browser

JDBC Connection
Pool

POJOs

Spring

Hibernate/JDO

JDBC

Figure 1.7
Deploying a POJO application
in a web container

28 CHAPTER 1

Developing with POJOs: faster and easier
the application server or an open source implementation such as DBCP [DBCP]. If
the application needed to be clustered for scalability and reliability, then it would
use the clustering feature of the web container.

 An application only needs to be deployed in a full-blown application server
(e.g., WebLogic Server or JBoss) if it requires those parts of the J2EE stack such as
JTA or JMS that are not provided by the web container or some third-party soft-
ware. You might also want to deploy your application in a particular server if you
wanted to use a vendor-specific feature. For example, some application servers
have sophisticated security and management capabilities. Only some applications
have these requirements, and if you break the dependency on EJBs by using POJOs
and lightweight technologies, you can often deploy an application in a simpler
and, in some cases, cheaper server.

1.2.8 POJO design summary

Let’s review the design of the money transfer service that uses a POJO object model,
Spring for transaction management and dependency injection, and Hibernate for
persistence. The design, which is shown in figure 1.8, has more components than
the EJB-based design described earlier in section 1.1.2. However, this more modular
design is easier to understand, test, and extend than the original version. Each class
has a small number of well-defined and easy-to-understand responsibilities. The use
of interfaces for the repositories simplifies testing by allowing the real implemen-
tations of the repositories to be replaced with stubs. OverdraftPolicy enables the
design to be extended to support new types of overdrafts without requiring modi-
fications to existing code.

 The core of the business logic consists of object model described earlier in sec-
tion 1.2.1 and includes classes such as Account and OverdraftPolicy. The
AccountRepository and BankingTransactionRepository classes encapsulate the
Hibernate APIs. AccountRepository defines a method for retrieving accounts, and
BankingTransactionRepository provides a method for creating transactions.
TransferService is a simple service that looks up the accounts by calling Account-
Repository and calls credit() and debit() on them. It also creates a Banking-
Transaction to record the transfer.

 TransferFacade is a simple wrapper around TransferService that retrieves the
data required by the presentation tier. This functionality could be implemented
by TransferService, but implementing it in a separate class keeps Transfer-
Service focused on transferring money and away from the presentation tier and
the details of detaching objects. TransferFacade is wrapped with a Spring Trans-
actionInterceptor that manages transactions.

Developing with POJOs 29
I have omitted some of the details, but I hope you can see what you can accomplish
with POJOs and lightweight frameworks such as Spring. By using Spring, we have
the functionality we formerly needed from the EJB container. By using POJOs, we
also have a design and structure of code that is impossible if we use the heavyweight
J2EE application server and all its services. Using the lighter weight tools allows us
to improve the structure, maintainability, and testability of our code.

Spring TransactionInterceptor

debit(amount)
credit(amount)

Account
Banking

Transaction

BankingTransaction transfer(fromId, toId, amount)

TransferService

findAccount(id)

<<interface>>
Account

Repository

<<interface>>
OverdraftPolicy

TransferResult transfer(fromId, toId, amount)

TransferFacadeImpl

Hibernate

createTransaction(...)

<<interface>>
BankingTransaction

Repository

NoOverdraft
Policy

Limited
Overdraft

findAccount(id)

Hibernate
Account

Repository

createTransaction(...)

HibernateBanking
Transaction
Repository

TransferResult transfer(fromId, toId, amount)

<<interface>>
TransferFacade

TransferResult

Figure 1.8 Money transfer service implemented with POJOs, Hibernate, and Spring

30 CHAPTER 1

Developing with POJOs: faster and easier
1.3 Summary

Building enterprise Java applications with a simple technology—POJOs—in con-
junction with lightweight frameworks such as Spring, Hibernate, and JDO has
some surprising benefits. You have the freedom to develop expressive object mod-
els rather than being forced down a procedural path. You get the benefits of EJB,
such as declarative transaction management and security, but in a much more
developer-friendly form. You can work on your core business logic without being
distracted by enterprise “issues” such as transaction management and persistence.
You can develop and test your code without being slowed down by deployment. As
a bonus, because the lightweight frameworks are noninvasive you can readily take
advantage of new and improved ones that will inevitably be developed.

 In the next chapter we look at the design decisions you need to make when
using them to develop an enterprise application.

J2EE design decisions
This chapter covers
■ Encapsulating the business logic
■ Organizing the business logic
■ Accessing the database
■ Handling database concurrency
31

32 CHAPTER 2

J2EE design decisions
Now that you have had a glimpse of how POJOs and lightweight frameworks such
as Spring and JDO make development easier and faster, let’s take a step back and
look at how you would decide whether and how to use them. If we blindly used
POJOs and lightweight frameworks, we would be repeating the mistake the enter-
prise Java community made with EJBs. Every technology has both strengths and
weaknesses, and it’s important to know how to choose the most appropriate one
for a given situation.

 This book is about implementing enterprise applications using design patterns
and lightweight frameworks. To enable you to use them effectively in your applica-
tion, it provides a decision-making framework that consists of five key questions
that must be answered when designing an application or implementing the busi-
ness logic for an individual use case. By consciously addressing each of these
design issues and understanding the consequences of your decisions, you will
vastly improve the quality of your application.

 In this chapter you will get an overview of those five design decisions, which
are described in detail in the rest of this book. I briefly describe each design deci-
sion’s options as well as their respective benefits and drawbacks. I also introduce
the example application that is used throughout this book and provide an over-
view of how to make decisions about its architecture and design.

2.1 Business logic and database access decisions

As you saw in chapter 1, there are two quite different ways to design an enterprise
Java application. One option is to use the classic EJB 2 approach, which I will refer
to as the heavyweight approach. When using the heavyweight approach, you use
session beans and message-driven beans to implement the business logic. You use
either DAOs or entity beans to access the business logic.

 The other option is to use POJOs and lightweight frameworks, which I’ll refer to
as the POJO approach. When using the POJO approach, your business logic consists
entirely of POJOs. You use a persistence framework (a.k.a., object/relational map-
ping framework) such as Hibernate or JDO to access the database, and you use Spring
AOP to provide enterprise services such as transaction management and security.

 EJB 3 somewhat blurs the distinction between the two approaches because it
has embraced POJOs and some lightweight concepts. For example, entity beans
are POJOs that can be run both inside and outside the EJB container. However,
while session beans and message-driven beans are POJOs they also have heavy-
weight behavior since they can only run inside the EJB container. So, as you can
see, EJB 3 has both heavyweight and POJO characteristics. EJB 3 entity beans are

Business logic and database access decisions 33
part of the lightweight approach whereas session beans and message-driven beans
are part of the heavyweight approach.

 Choosing between the heavyweight approach and the POJO approach is one of
the first of myriad design decisions that you must make during development. It’s a
decision that affects several aspects of the application, including business logic
organization and the database access mechanism. To help decide between the two
approaches, let’s look at the architecture of a typical enterprise application, which
is shown in figure 2.1, and examine the kinds of decisions that must be made
when developing it.

Design Decisions

Business Tier

Persistence Tier

Presentation Tier

Database

How to access
the database

How to
encapsulate the
business logic

How to organize
the business

logic

How to handle
concurrency in
long-running
transactions

How to handle
concurrency in

short transactions

Business Tier Interface

Figure 2.1 A typical application architecture and the key business logic and database access
design decisions

34 CHAPTER 2

J2EE design decisions
The application consists of the web-based presentation tier, the business tier, and
the persistence tier. The web-based presentation tier handles HTTP requests and
generates HTML for regular browser clients and XML and other content for rich
Internet clients, such as Ajax-based clients. The business tier, which is invoked by
the presentation tier, implements the application’s business logic. The persistence
tier is used by the business tier to access external data sources such as databases
and other applications.

 The design of the presentation tier is outside the scope of this book, but let’s
look at the rest of the diagram. We need to decide the structure of the business
tier and the interface that it exposes to the presentation tier and its other clients.
We also need to decide how the persistence tier accesses databases, which is the
main source of data for many applications. We must also decide how to handle
concurrency in short transactions and long-running transactions. That adds up to
five decisions that any designer/architect must make and that any developer must
know in order to understand the big picture.

 These decisions determine key characteristics of the design of the application’s
business and the persistence tiers. There are, of course, many other important
decisions that you must make—such as how to handle transactions, security, and
caching and how to assemble the application—but as you will see later in this
book, answering those five questions often addresses these other issues as well.

 Each of the five decisions shown in figure 2.1 has multiple options. For exam-
ple, in chapter 1 you saw two different options for three of these decisions. The
EJB-based design, which was described in section 1.1, consisted of procedural
code implemented by a session bean and used JDBC to access the database. In
comparison, the POJO-based design, which was described in section 1.2, consisted
of an object model, which was mapped to the database using JDO and was encap-
sulated with a POJO façade that used Spring for transaction management.

 Each option has benefits and drawbacks that determine its applicability to a
given situation. As you will see in this chapter, each one makes different trade-offs
in terms of one or more areas, including functionality, ease of development, main-
tainability, and usability. Even though I’m a big fan of the POJO approach, it is
important to know these benefits and drawbacks so that you can make the best
choices for your application.

 Let’s now take a brief look at each decision and its options.

Decision 1: organizing the business logic 35
2.2 Decision 1: organizing the business logic

These days a lot of attention is focused on the benefits and drawbacks of particu-
lar technologies. Although this is certainly very important, it is also essential to
think about how your business logic is structured. It is quite easy to write code
without giving much thought to how it is organized. For example, as I described
in the previous chapter it is too easy to add yet more code to a session bean
instead of carefully deciding which domain model class should be responsible for
the new functionality. Ideally, however, you should consciously organize your busi-
ness logic in the way that’s the most appropriate for your application. After all,
I’m sure you’ve experienced the frustration of having to maintain someone else’s
badly structured code.

 The key decision you must make is whether to use an object-oriented approach
or a procedural approach. This isn’t a decision about technologies, but your
choice of technologies can potentially constrain the organization of the business
logic. Using EJB 2 firmly pushes you toward a procedural design whereas POJOs
and lightweight frameworks enable you to choose the best approach for your par-
ticular application. Let’s examine the options.

2.2.1 Using a procedural design

While I am a strong advocate of the object-oriented approach, there are some sit-
uations where it is overkill, such as when you are developing simple business logic.
Moreover, an object-oriented design is sometimes infeasible—for example, if you
do not have a persistence framework to map your object model to the database. In
such a situation, a better approach is to write procedural code and use what
Fowler calls the Transaction Script pattern [Fowler 2002]. Rather than doing any
object-oriented design, you simply write a method, which is called a transaction
script, to handle each request from the presentation tier.

 An important characteristic of this approach is that the classes that implement
behavior are separate from those that store state. In an EJB 2 application, this typi-
cally means that your business logic will look similar to the design shown in
figure 2.2. This kind of design centralizes behavior in session beans or POJOs,
which implement the transaction scripts and manipulate “dumb” data objects that
have very little behavior. Because the behavior is concentrated in a few large
classes, the code can be difficult to understand and maintain.

 The design is highly procedural, and relies on few of the capabilities of object-
oriented programming (OOP) languages. This is the type of design you would
create if you were writing the application in C or another non-OOP language.

36 CHAPTER 2

J2EE design decisions
Nevertheless, you should not be ashamed to use a procedural design when it is
appropriate. In chapter 9 you will learn when it does make sense and see some
ways to improve a procedural design.

2.2.2 Using an object-oriented design

The simplicity of the procedural approach can be quite seductive. You can just
write code without having to carefully consider how to organize the classes. The
problem is that if your business logic becomes complex, then you can end up with
code that’s a nightmare to maintain. Consequently, unless you are writing an
extremely simple application you should resist the temptation to write procedural
code and instead develop an object-oriented design.

 In an object-oriented design, the business logic consists of an object model,
which is a network of relatively small classes. These classes typically correspond
directly to concepts from the problem domain. For example, in the money transfer
example in section 1.2 the POJO version consists of classes such as TransferService,
Account, OverdraftPolicy, and BankingTransaction, which correspond to con-
cepts from the banking domain. As figure 2.3 shows, in such a design some classes
have only either state or behavior but many contain both, which is the hallmark of
a well-designed class.

 As we saw in chapter 1, an object-oriented design has many benefits, including
improved maintainability and extensibility. You can implement a simple object
model using EJB 2 entity beans, but to enjoy most of the benefits you must use
POJOs and a lightweight persistence framework such as Hibernate and JDO. POJOs
enable you to develop a rich domain model, which makes use of such features as
inheritance and loopback calls. A lightweight persistence framework enables you
to easily map the domain model to the database.

Legend:

Behavior

State

Transaction
Scripts

(Session
Beans)

Data
Objects

Figure 2.2 The structure of a procedural design: large transaction script classes
and many small data objects

Decision 2: encapsulating the business logic 37
Another name for an object model is a domain model, and Fowler calls the
object-oriented approach to developing business logic the Domain Model pattern
[Fowler 2002]. In chapter 3 I describe one way to develop a domain model and in
chapters 4-6 you will learn about how to persist a domain model with Hibernate
and JDO.

2.2.3 Table Module pattern

I have always developed applications using the Domain Model and Transaction
Script patterns. But I once heard rumors of an enterprise Java application that
used a third approach, which is what Martin Fowler calls the Table Module pattern.
This pattern is more structured than the Transaction Script pattern, because for
each database table it defines a table module class that implements the code that
operates on that table. But like the Transaction Script pattern it separates state
and behavior into separate classes because an instance of a table module class rep-
resents the entire database rather individual rows. As a result, maintainability is a
problem. Consequently, there is very little benefit to using the Table Module pat-
tern, and so I’m not going to look at it in anymore detail in this book.

2.3 Decision 2: encapsulating the business logic

In the previous section, I covered how to organize the business logic. You must also
decide what kind of interface the business logic should have. The business logic’s
interface consists of those types and methods that are callable by the presentation
tier. An important consideration when designing the interface is how much of the
business logic’s implementation should be encapsulated and therefore not visible
to the presentation tier. Encapsulation improves maintainability because by hiding

Legend:

Behavior

State

Figure 2.3
The structure of a domain model:
small classes that have state and
behavior

38 CHAPTER 2

J2EE design decisions
the business logic’s implementation details it can prevent changes to it affecting the
presentation tier. The downside is that you must typically write more code to encap-
sulate the business logic.

 You must also address other important issues, such as how to handle transac-
tions, security, and remoting, since they are generally the responsibility of the
business logic’s interface code. The business tier’s interface typically ensures that
each call to the business tier executes in a transaction in order to preserve the
consistency of the database. Similarly, it also verifies that the caller is authorized to
invoke a business method. The business tier’s interface is also responsible for han-
dling some kinds of remote clients.

 Let’s consider the options.

2.3.1 EJB session facade

The classic-J2EE approach is to encapsulate business logic with an EJB-based ses-
sion façade. The EJB container provides transaction management, security, distrib-
uted transactions, and remote access. The façade also improves maintainability by
encapsulating the business logic. The coarse-grained API can also improve perfor-
mance by minimizing the number of calls that the presentation tier must make to
the business tier. Fewer calls to the business tier reduce the number of database
transactions and increase the opportunity to cache objects in memory. It also
reduces the number of network round-trips if the presentation tier is accessing the
business tier remotely. Figure 2.4 shows an example of an EJB-based session façade.

EJB Container
Encapsulation
Container-Managed Transactions
Declarative Security

Session
Façade

Business
Object

Business
Object

Business
Object

Presentation Tier

Business Tier

Component
Web

Component
Web

Figure 2.4
Encapsulating the business
logic with an EJB session
façade

Decision 2: encapsulating the business logic 39
In this design, the presentation tier, which may be remote, calls the façade. The
EJB container intercepts the calls to the façade, verifies that the caller is autho-
rized, and begins a transaction. The façade then calls the underlying objects that
implement the business logic. After the façade returns, the EJB container commits
or rolls back the transaction.

 Unfortunately, using an EJB session façade has some significant drawbacks. For
example, EJB session beans can only run in the EJB container, which slows devel-
opment and testing. In addition, if you are using EJB 2, then developing and main-
taining DTOs, which are used to return data to the presentation tier, is tedious
and time consuming.

2.3.2 POJO façade

For many applications, a better approach uses a POJO façade in conjunction with
an AOP-based mechanism such as the Spring framework that manages transac-
tions, persistence framework connections, and security. A POJO facade encapsu-
lates the business tier in a similar fashion to an EJB session façade and usually has
the same public methods. The key difference is that it’s a POJO instead of an EJB
and that services such as transaction management and security are provided by
AOP instead of the EJB container. Figure 2.5 shows an example of a design that
uses a POJO façade.

 The presentation tier invokes the POJO façade, which then calls the business
objects. In the same way that the EJB container intercepts the calls to the EJB

Spring AOP Encapsulation
AOP-Managed Transactions
AOP-Based Security

Web
Component

POJO
Façade

Business
Object

Business
Object

Business
Object

Web
Component

Presentation Tier

Business Tier

Figure 2.5
Encapsulating the business
logic with a POJO façade

40 CHAPTER 2

J2EE design decisions
façade, the AOP interceptors intercept the calls to the POJO façade and authenti-
cate the caller and begin, commit, and roll back transactions.

 The POJO façade approach simplifies development by enabling all of the busi-
ness logic to be developed and tested outside the application server, while provid-
ing many of the important benefits of EJB session beans such as declarative
transactions and security. As an added bonus, you have to write less code. You can
avoid writing many DTO classes because the POJO façade can return domain
objects to the presentation tier; you can also use dependency injection to wire the
application’s components together instead of writing JNDI lookup code.

 However, as you will see in chapter 7 there are some reasons not to use the
POJO façade. For example, a POJO façade cannot participate in a distributed
transaction initiated by a remote client.

2.3.3 Exposed Domain Model pattern

Another drawback of using a façade is that you must write extra code. Moreover,
as you will see in chapter 7, the code that enables persistent domain objects to be
returned to the presentation tier is especially prone to errors. There is the
increased risk of runtime errors caused by the presentation tier trying to access an
object that was not loaded by the business tier. If you are using JDO, Hibernate, or
EJB 3, you can avoid this problem by exposing the domain model to the presenta-
tion tier and letting the business tier return the persistent domain objects back to
the presentation tier. As the presentation tier navigates relationships between
domain objects, the persistence framework will load the objects that it accesses, a
technique known as lazy loading. Figure 2.6 shows a design in which the presenta-
tion tier freely accesses the domain objects.

Spring AOP AOP-Managed Transactions
AOP-Based Security

Web
Component

Business
Object

Business
Object

Business
Object

Web
Component

Presentation Tier

Business Tier

Figure 2.6
Using an exposed
domain model

Decision 3: accessing the database 41
In the design in figure 2.6, the presentation tier calls the domain objects directly
without going through a façade. Spring AOP continues to provide services such as
transaction management and security.

 An important benefit of this approach is that it eliminates the need for the
business tier to know what objects it must load and return to the presentation tier.
However, although this sounds simple you will see there are some drawbacks. It
increases the complexity of the presentation tier, which must manage database
connections. Transaction management can also be tricky in a web application
because transactions must be committed before the presentation tier sends any
part of the response back to the browser. Chapter 8 describes how to address these
issues and implement an exposed domain model.

2.4 Decision 3: accessing the database

No matter how you organize and encapsulate the business logic, eventually you
have to move data to and from the database. In a classic J2EE application you had
two main choices: JDBC, which required a lot of low-level coding, or entity beans,
which were difficult to use and lacked important features. In comparison, one of
the most exciting things about using lightweight frameworks is that you have some
new and much more powerful ways to access the database that significantly reduce
the amount of database access code that you must write. Let’s take a closer look.

2.4.1 What’s wrong with using JDBC directly?

The recent emergence of object/relational mapping frameworks (such as JDO
and Hibernate) and SQL mapping frameworks (such as iBATIS) did not occur in a
vacuum. Instead, they emerged from the Java community’s repeated frustrations
with JDBC. Let’s review the problems with using JDBC directly in order to under-
stand the motivations behind the newer frameworks. There are three main rea-
sons why using JDBC directly is not a good choice for many applications:

■ Developing and maintaining SQL is difficult and time consuming—Some devel-
opers find writing large, complex SQL statements quite difficult. It can also
be time consuming to update the SQL statements to reflect changes in the
database schema. You need to carefully consider whether the loss of main-
tainability is worth the benefits.

■ There is a lack of portability with SQL—Because you often need to use database-
specific SQL, an application that works with multiple databases must have
multiple versions of some SQL statements, which can be a maintenance

42 CHAPTER 2

J2EE design decisions
nightmare. Even if your application only works with one database in produc-
tion, SQL’s lack of portability can be an obstacle to using a simpler and faster
in-memory database such as Hypersonic Structured Query Language Data-
base Engine (HSQLDB) for testing.

■ Writing JDBC code is time consuming and error-prone—You must write lots of
boilerplate code to obtain connections, create and initialize Prepared-
Statements, and clean up by closing connections and prepared statements.
You also have to write the code to map between Java objects and SQL state-
ments. As well as being tedious to write, JDBC code is also error-prone.

The first two problems are unavoidable if your application must execute SQL
directly. Sometimes, you must use the full power of SQL, including vendor-specific
features, in order to get good performance. Or, for a variety of business-related
reasons, your DBA might demand complete control over the SQL statements exe-
cuted by your application, which can prevent you from using persistence frame-
works that generate the SQL on the fly. Often, the corporate investment in its
relational databases is so massive that the applications working with the databases
can appear relatively unimportant. Quoting the authors of iBATIS in Action, there
are cases where “the database and even the SQL itself have outlived the applica-
tion source code, or even multiple versions of the source code. In some cases, the
application has been rewritten in a different language, but the SQL and database
remained largely unchanged.” If you are stuck with using SQL directly, then fortu-
nately there is a framework for executing it directly, one that is much easier to use
than JDBC. It is, of course, iBATIS.

2.4.2 Using iBATIS

All of the enterprise Java applications I’ve developed executed SQL directly. Early
applications used SQL exclusively whereas the later ones, which used a persistence
framework, used SQL in a few components. Initially, I used plain JDBC to execute
the SQL statements, but later on I often ended up writing mini-frameworks to han-
dle the more tedious aspects of using JDBC. I even briefly used Spring’s JDBC
classes, which eliminate much of the boilerplate code. But neither the home-
grown frameworks nor the Spring classes addressed the problem of mapping
between Java classes and SQL statements, which is why I was excited to come
across iBATIS.

 In addition to completely insulating the application from connections and pre-
pared statements, iBATIS maps JavaBeans to SQL statements using XML descriptor
files. It uses Java bean introspection to map bean properties to prepared statement

Decision 3: accessing the database 43
placeholders and to construct beans from a ResultSet. It also includes support for
database-generated primary keys, automatic loading of related objects, caching,
and lazy loading. In this way, iBATIS eliminates much of the drudgery of executing
SQL statements. As you will see in several chapters, including chapter 9, iBATIS can
considerably simplify code that executes SQL statements. Instead of writing a lot of
low-level JDBC code, you write an XML descriptor file and make a few calls to iBA-
TIS APIs.

2.4.3 Using a persistence framework

Of course, iBATIS cannot address the overhead of developing and maintaining
SQL or its lack of portability. To avoid those problems you need to use a persis-
tence framework. A persistence framework maps domain objects to the database.
It provides an API for creating, retrieving, and deleting objects. It automatically
loads objects from the database as the application navigates relationships between
objects and updates the database at the end of a transaction. A persistence frame-
work automatically generates SQL using the object/relational mapping, which is
typically specified by an XML document that defines how classes are mapped to
tables, how fields are mapped to columns, and how relationships are mapped to
foreign keys and join tables.

 EJB 2 had its own limited form of persistence framework: entity beans. How-
ever, EJB 2 entity beans have so many deficiencies, and developing and testing
them is extremely tedious. As a result, EJB 2 entity beans should rarely be used.
What’s more, as I describe in chapter 10 it is unclear how some of their deficien-
cies will be addressed by EJB 3.

 The two most popular lightweight persistence frameworks are
JDO[JSR12][JSR243], which is a Sun standard, and Hibernate, which is an open
source project. They both provide transparent persistence for POJO classes. You
can develop and test your business logic using POJO classes without worrying
about persistence, then map the classes to the database schema. In addition, they
both work inside and outside the application server, which simplifies development
further. Developing with Hibernate and JDO is so much more pleasurable than
with old-style EJB 2 entity beans.

 Several chapters in this book describe how to use JDO and Hibernate effectively.
In chapter 5 you will learn how to use JDO to persist a domain model. Chapter 6
looks at how to use Hibernate to persist a domain model. In chapter 11 you will
learn how to use JDO and Hibernate to efficiently query large databases and pro-
cess large result sets.

44 CHAPTER 2

J2EE design decisions
 In addition to deciding how to access the database, you must decide how to
handle database concurrency. Let’s look at why this is important as well as the
available options.

2.5 Decision 4: handling concurrency
in database transactions

Almost all enterprise applications have multiple users and background threads that
concurrently update the database. It’s quite common for two database transactions
to access the same data simultaneously, which can potentially make the database
inconsistent or cause the application to misbehave. In the TransferService exam-
ple in chapter 1, two transactions could update the same bank account simulta-
neously, and one transaction could overwrite the other’s changes; money could
simply disappear. Given that the modern banking system is not backed by gold, nor
even paper, but just supported by electronic systems, I’m sure you can appreciate
the importance of transaction integrity.

 Most applications must handle multiple transactions concurrently accessing
the same data, which can affect the design of the business and persistence tiers.

 Applications must, of course, handle concurrent access to shared data regard-
less of whether they are using lightweight frameworks or EJBs. However, unlike
EJB 2 entity beans, which required you to use vendor-specific extensions, JDO and
Hibernate directly support most of the concurrency mechanisms. What’s more,
using them is either a simple configuration issue or requires only a small amount
of code.

 The details of concurrency management are described in chapters 12 and 13.
In this section, you will get a brief overview of the different options for handling
concurrent updates in database transactions, which are transactions that do not
involve any user input. In the next section, I briefly describe how to handle con-
current updates in longer application-level transactions, which are transactions
that involve user input and consist of a sequence of database transactions.

2.5.1 Isolated database transactions

Sometimes you can simply rely on the database to handle concurrent access to
shared data. Databases can be configured to execute database transactions that
are, in database-speak, isolated from one another. Don’t worry if you are not
familiar with this concept; it’s explained in more detail in chapter 12. For now the
key thing to remember is that if the application uses fully isolated transactions,

Decision 4: handling concurrency in database transactions 45
then the net effect of executing two transactions simultaneously will be as if they
were executed one after the other.

 On the surface this sounds extremely simple, but the problem with these kinds
of transactions is that they have what is sometimes an unacceptable reduction in
performance because of how isolated transactions are implemented by the data-
base. For this reason, many applications avoid them and instead use what is
termed optimistic or pessimistic locking, which is described a bit later.

 Chapter 12 looks at when to use database transactions that are isolated from
one another and how to use them with iBATIS, JDO, and Hibernate.

2.5.2 Optimistic locking

One way to handle concurrent updates is to use optimistic locking. Optimistic
locking works by having the application check whether the data it is about to
update has been changed by another transaction since it was read. One common
way to implement optimistic locking is to add a version column to each table,
which is incremented by the application each time it changes a row. Each UPDATE
statement’s WHERE clause checks that the version number has not changed since it
was read. An application can determine whether the UPDATE statement succeeded
by checking the row count returned by PreparedStatement.executeUpdate(). If
the row has been updated or deleted by another transaction, the application can
roll back the transaction and start over.

 It is quite easy to implement an optimistic locking mechanism in an applica-
tion that executes SQL statements directly. But it is even easier when using persis-
tence frameworks such as JDO and Hibernate because they provide optimistic
locking as a configuration option. Once it is enabled, the persistence framework
automatically generates SQL UPDATE statements that perform the version check.
Chapter 12 looks at when to use optimistic locking, explores its drawbacks, and
shows you how to use it with iBATIS, JDO, and Hibernate.

 Optimistic locking derives its name from the fact it assumes that concurrent
updates are rare and that instead of preventing them the application detects and
recovers from them. An alternative approach is to use pessimistic locking, which
assumes that concurrent updates will occur and must be prevented.

2.5.3 Pessimistic locking

An alternative to optimistic locking is pessimistic locking. A transaction acquires
locks on the rows when it reads them, which prevent other transactions from
accessing the rows. The details depend on the database, and unfortunately not all
databases support pessimistic locking. If it is supported by the database, it is quite

46 CHAPTER 2

J2EE design decisions
easy to implement a pessimistic locking mechanism in an application that executes
SQL statements directly. However, as you would expect, using pessimistic locking in
a JDO or Hibernate application is even easier. JDO provides pessimistic locking as a
configuration option, and Hibernate provides a simple programmatic API for lock-
ing objects. Again, in chapter 12 you will learn when to use pessimistic locking,
examine its drawbacks, and see how to use it with iBATIS, JDO, and Hibernate.

 In addition to handling concurrency within a single database transaction, you
must often handle concurrency across a sequence of database transactions.

2.6 Decision 5: handling concurrency
in long transactions

Isolated transactions, optimistic locking, and pessimistic locking only work within
a single database transaction. However, many applications have use cases that are
long running and that consist of multiple database transactions which read and
update shared data. For example, one of the use cases that you will encounter
later in this chapter is the Modify Order use case, which describes how a user edits
an order (the shared data). This is a relatively lengthy process, which might take
as long as several minutes and consists of multiple database transactions. Because
data is read in one database transaction and modified in another, the application
must handle concurrent access to shared data differently. It must use the Optimis-
tic Offline Lock pattern or the Pessimistic Offline Lock pattern, two patterns described
by Fowler [Fowler 2002].

2.6.1 Optimistic Offline Lock pattern

One option is to extend the optimistic locking mechanism described earlier and
check in the final database transaction of the editing process that the data has not
changed since it was first read. You can, for example, do this by using a version
number column in the shared data’s table. At the start of the editing process, the
application stores the version number in the session state. Then, when the user
saves their changes, the application makes sure that the saved version number
matches the version number in the database.

 In chapter 13 you will learn more about when to use Optimistic Offline Lock
pattern and how to use it with iBATIS, JDO, and Hibernate. Because the Optimistic
Offline Lock pattern only detects changes when the user tries to save their
changes, it only works well when starting over is not a burden on the user. When
implementing use cases such as the Modify Order use case where the user would

Decision 5: handling concurrency in long transactions 47
be extremely annoyed by having to discard several minutes’ work, a much better
option is to use the Pessimistic Offline Lock.

2.6.2 Pessimistic Offline Lock pattern

The Pessimistic Offline Lock pattern handles concurrent updates across a
sequence of database transactions by locking the shared data at the start of the
editing process, which prevents other users from editing it. It is similar to the pes-
simistic locking mechanism described earlier except that the locks are imple-
mented by the application rather than the database. Because only one user at a
time is able to edit the shared data, they are guaranteed to be able to save their
changes. In chapter 13 you will learn more about when to use Pessimistic Offline
Lock pattern, examine some of the implementation challenges, and see how to
use it with iBATIS, JDO, and Hibernate.

 Let’s review the five design decisions. These decisions and their options are sum-
marized in table 2.1. In the rest of the book you will learn more about each option,
examining in particular its benefits and drawbacks and how to implement it.

Now that you have gotten an overview of the business logic and database access
design decisions, let’s see how a development team applies them.

Table 2.1 The key business logic design decisions and their options

Decision Options

Business logic organization Domain Model pattern
Transaction Script pattern
Table Module pattern

Business logic encapsulation EJB Session Façade pattern
POJO Façade pattern
Exposed Domain Model pattern

Database access Direct JDBC
iBATIS
Hibernate
JDO

Concurrency in database trans-
actions

Ignore the problem
Pessimistic locking
Optimistic locking
Serializable isolation level

Concurrency in long-running
transactions

Ignore the problem
Pessimistic Offline Lock pattern
Optimistic Offline Lock pattern

48 CHAPTER 2

J2EE design decisions
2.7 Making design decisions on a project

In this section you will see an example of how a development team goes about
making the five design decisions I introduced in this chapter. It illustrates the kind
of decision-making process that you must use when choosing between the POJO
approach and the heavyweight approach. The team in this example is developing
an application for a fictitious company called Food to Go Inc. I describe how the
developers make decisions about the overall design of the Food to Go application
and decisions about the design of the business logic for individual use cases.

2.7.1 Overview of the example application

Before seeing how the team makes decisions, let’s first review some background
information about the problem the team is trying to solve, and the application’s
high-level architecture. This will set the stage for a discussion of how a develop-
ment team can go about making design decisions. Food To Go Inc. is a company
that delivers food orders from restaurants to customers' homes and offices. The
founders of Food to Go have decided to build a J2EE-based application to run
their business. This application supports the following kinds of users:

■ Customers—Place orders and check order status

■ Customer service reps—Handle phone enquiries from customers about their
orders

■ Restaurants—Maintain menus and prepare the orders

■ Dispatchers—Assign drivers to orders

■ Drivers—Pick up orders from restaurants and deliver them

The company has put together a team consisting of five developers: Mary, Tom,
Dick, Harry, and Wanda. They are all experienced developers who will jointly
make architectural decisions in addition to implementing the application. The
businesspeople and the development team kick off the project by meeting for a
few days to refine the requirements and develop a high-level architecture.

The requirements
After a lot of discussion, they jointly decide on the following scenario to describe
how an order flows through the system. The sequence of events is as follows:

1 The customer places the order via the website.

2 The system sends the order (by fax or email) to the restaurant.

Making design decisions on a project 49
3 The restaurant acknowledges receipt of the order.

4 A dispatcher assigns a driver to the order.

5 The system sends a notification to the assigned driver.

6 The driver views the assigned order on a cell phone.

7 The driver picks up the order from the restaurant and notifies the system
that the order has been picked up.

8 The driver delivers the order to the customer and notifies the system that
the order has been delivered.

In addition to coming up with a scenario that captures the vision of how the appli-
cation will ultimately work, the developers and businesspeople also break down
the application’s requirements into a set of use cases. Given that Food to Go has
limited resources, the team has decided to use an iterative and incremental
approach to developing the application. They have decided to defer the imple-
mentation of use cases for dispatches and drivers to later iterations and to tackle
the following use cases in the first iteration:

■ Place Order—Describes how a customer places an order

■ View Orders—Describes how a customer service representative can view orders

■ Send Orders to Restaurant—Describes how the system sends orders to restau-
rants

■ Acknowledge Order—Describes how a restaurant can acknowledge receipt of
an order

■ Modify Order—Describes how a customer service representative can modify
an order

These use cases are used throughout this book to illustrate how to develop enter-
prise Java applications with POJOs and lightweight frameworks. I describe each of
these use cases in a bit more detail later in this chapter, but let’s first look at the
application’s high-level architecture.

The application’s architecture
In the kickoff meeting, the team also sketches out the application’s high-level
architecture, which is shown in figure 2.7. This diagram shows the application’s
main components and its actors. It has the standard three-layer architecture con-
sisting of the web-based presentation, business, and database access tiers. As you
would expect, the application stores its data in a relational database.

50 CHAPTER 2

J2EE design decisions
The application has a web-based presentation tier that implements the user inter-
face (UI) for the users. The application’s business tier consists of various compo-
nents that are responsible for order management and restaurant management.
The application’s persistence tier is responsible for accessing the database. The
design of the presentation tier is outside the scope of this book, and so we are
going to focus on the design of the business and persistence tiers. Let’s see how
the team makes some critical design decisions.

Business Tier

Presentation Tier

Customer
UI

Customer
Service

UI
Restaurant UI Dispatcher UI Driver UI

Customer Restaurant DriverDispatcher Customer
Service

Order
Processing

Restaurant
Management

...

Persistence Tier

Database

Figure 2.7 High-level architecture of the Food to Go application

Making design decisions on a project 51
2.7.2 Making high-level design decisions

After identifying some requirements and sketching out a high-level architecture,
the team needs to make the high-level design decisions that determine the overall
design of the application. In this section, we consider each of the five design deci-
sions that we described earlier and show how a development team might make
those decisions. You will learn about the kind of process that you must use when
designing your application.

Organizing the business logic
The business logic for this application is responsible for such tasks as determining
which restaurants can deliver to a particular address at the specified time, apply-
ing discounts, charging credit cards, and scheduling drivers. The team needs to
choose between an object-oriented approach or a procedural approach. When
making this decision, the team first considers the potential complexity of the busi-
ness logic. After reviewing the use cases, the team concludes that it could become
quite complex, which means that using an object-oriented approach and develop-
ing a domain model is the best approach. Even though it is simpler, using a proce-
dural approach to organize the business logic would lead to maintenance
problems in the future.

 The team also briefly looks at the issue of whether they could use a persistence
framework to access the database. Unlike when developing some past applica-
tions, they are not constrained by a legacy schema or the requirement to use SQL
statements maintained by a database administrator (DBA). Consequently, they are
free to use a persistence framework and to implement the business logic using a
domain model. However, they also decide that some business logic components
can use a procedural approach if they must access the database in ways that are
not supported by the persistence framework.

Encapsulating the business logic
In the past the team used EJB-based session façades to encapsulate the business
logic and provide transaction management and security. EJB session façades
worked reasonably well except for the impact they have on the edit-compile-
debug cycle. Eager to avoid the tedium of deploying EJBs, the team is ready to
adopt a more lightweight approach. Mary, who has just returned from the TSS
Java Symposium 2005, where she spent three days hearing about POJOs, depen-
dency injection, lightweight containers, AOP, and EJB 3, convinces the rest of the
team to use the Spring framework instead of EJBs.

52 CHAPTER 2

J2EE design decisions
 Having decided to use Spring, the team must now decide between using POJO
façades and the exposed domain model. After spending a lot of time discussing
these two options, they decide that the exposed domain model approach is too
radical and that they are more comfortable using a POJO façade.

Accessing the database
Because the team has decided to use a domain model, it must pick a persistence
framework. It would simply be too much work to persist the domain model with-
out one. On its last project, the team used EJB CMP because, despite its glaring
deficiencies, it was at that time the most mature solution. JDO was still in its
infancy and the team had not yet heard of Hibernate. However, that was quite
some time ago, and since then the team members have all read a few articles
about JDO and Hibernate and decide that they are powerful and mature technol-
ogies. They are excited that they do not have to use entity beans again. After an
animated discussion, the team picks JDO because its company prefers to use stan-
dards that are supported by multiple vendors. It hopes, however, to use Hibernate
on some other project in the future.

Handling concurrent updates
The Food to Go application, like many other enterprise applications, is a multiuser
application, which means that multiple transactions will access the same data con-
currently. For example, two transactions could attempt to update the same order
simultaneously. Therefore, it’s essential to have a concurrency strategy. After
reviewing the three options—isolated database transactions, optimistic locking,
and pessimistic locking—the team picks optimistic locking because they have had
experience with it and know that it performs well. Moreover, it is supported by
JDO, which means that using it involves a simple configuration option.

Handling offline concurrency
Some of the application’s use cases, such as the Modify Order use case, are long-
running application transactions where data read in one database transaction is
updated in another database transaction. In order to prevent two users from edit-
ing the same order simultaneously and overwriting each other’s changes, it’s
important to implement an offline concurrency mechanism. The Optimistic
Offline Lock pattern is easier to implement, especially because the application
can leverage the optimistic locking mechanism provided by the persistence frame-
work. However, the team decides to use the Pessimistic Offline Lock pattern for

Making design decisions on a project 53
the Order class because users would be frustrated if they could not save the
changes that they made to an order.

Summary of the high-level decisions
The team has made a number of key design decisions. They have decided that the
business logic must be primarily organized using a JDO-based domain model, and
encapsulated using POJO façades that use detached domain objects as DTOs.
Finally, they have decided to use optimistic locking as the database-level concur-
rency mechanism, the Optimistic Offline Lock pattern as the default offline lock-
ing mechanism, and the Pessimistic Offline Lock pattern when necessary.
However, these decisions are not completely set in stone, and they agree to revisit
them as more is discovered about the application during development. Table 2.2
summarizes the architectural choices and options available to the developers.

Table 2.2 shows the default design decisions the team made when implementing
each component of the application. However, a developer working on a particular
use case can use a different approach if it is absolutely necessary. For example, she
might discover that the business logic for a use case needs to execute SQL directly
instead of JDO in order to achieve the necessary performance. Let’s look at exam-
ples of the decisions that are made when developing individual use cases.

2.7.3 Making use case–level decisions

Mary, Tom, Dick, Harry, and Wanda are each responsible for analyzing one use
case and determining the most appropriate option for each design decision. Nat-
urally, they have to work within the constraints imposed by the architecture that
they have defined. In addition, even though some business logic components are

Table 2.2 Architectural decisions

Decision Options

Business logic organization strategy Domain model with transaction scripts
where necessary

Business logic encapsulation strategy POJO façade

Persistence strategy JDO for the domain model

Online concurrency strategy Optimistic locking

Offline concurrency strategy Optimistic Offline Lock pattern
Pessimistic Offline Lock pattern (if required)

54 CHAPTER 2

J2EE design decisions
specifically for a single use case, others are shared by multiple use cases and so it is
essential that the developers collaborate closely.

 In this section we show how a developer might go about designing the business
logic for a use case and direct you to the chapters that will teach you how to imple-
ment the chosen options. It’s important to remember, however, that the decisions
made by each developer in this section are only one of several different ways to
implement the use case. Consequently, we also point you to the chapters that
describe how to implement alternative approaches. Let’s look at each of the use
cases and see which options the developer’s pick.

The Place Order use case
Mary is responsible for implementing the Place Order use case:

As you can see, the business logic for this use case is fairly complex, and so it
makes sense to implement it using a domain model that is persisted with JDO.
Database concurrency isn’t an issue because this use case does not update any
shared data. The pending order is data that is private to a single user’s session and
the order, which is shared data, is not updated in this use case once it has been
created. After analyzing the use case, Mary makes the decisions shown in table 2.3.
In chapter 4, you will learn how to develop a domain model for the Place Order
use case; chapter 5 shows you how to persist it with JDO. In chapter 6, we describe

The customer enters the delivery address and time. The system first verifies that
the delivery time is in the future and that at least one restaurant serves the deliv-
ery information. It then updates the pending order with the delivery informa-
tion, and displays a list of available restaurants.

The customer selects a restaurant. The system updates the pending order with
the restaurant and displays the menu for the selected restaurant.

The customer enters quantities for each menu item. The system updates the
pending order with the quantities and displays the updated pending order.

The customer enters payment information (credit card information and billing
address). The system updates the pending order with the payment information
and displays the pending order with totals, tax, and charges.

The customer confirms that she wants to place the order. The system authorizes
the credit card, creates the order, and displays an order confirmation, which
includes the order number.

Making design decisions on a project 55
how to persist that domain model with Hibernate, and in chapter 9 you will see
how to implement the same business logic using a procedural approach.

The View Orders use case
Tom is responsible for implementing the View Orders use case:

Tom analyzes this use case and concludes that a key issue is that the order table
will contain a large number of rows and will need to be denormalized for efficient
access. In addition, the queries will need to be heavily tuned and make use of Ora-
cle-specific features. Consequently, Tom decides that he needs to use SQL queries
to retrieve the orders. Table 2.4 summarizes his decisions.

Table 2.3 Mary’s decisions

Strategy Decision Rationale

Business logic organization Domain Model pattern The business logic is relatively complex.
There does not appear to be any queries that
cannot be handled by the JDO query language.

Database access JDO Using the Domain Model pattern.

Concurrency None This use case does not update shared data.
The order is created at the end of the use
case.
The pending order is session state and is only
updated by this session.

The customer service representative enters the search criteria. The system dis-
plays the orders that match the search criteria. The customer service representa-
tive can cancel or modify an order.

Table 2.4 Tom’s decisions

Strategy Decision Rationale

Business logic organization Transaction Script pattern Simple business logic.
Uses iBATIS.

Database access iBATIS Heavily optimized SQL queries using
Oracle-specific features.
Database schema denormalized for
efficient access.

Concurrency None This use case does not update
shared data.

56 CHAPTER 2

J2EE design decisions
In chapter 11, you will learn about the different ways to implement this use case.

The Send Orders to Restaurant use case
Dick is responsible for implementing the Send Orders to Restaurant use case:

The business logic for this use case is fairly simple. Dick determines that he can
implement this use case using a single database transaction, which finds the
orders that need to be sent, sends them to the restaurant, and updates the orders.
He also decides that even though the business logic is simple, it fits with the exist-
ing domain model. Table 2.5 summarizes his decisions.

Dick forgets that the Order class needs to use an offline locking pattern.
 Chapter 12 looks at the different ways of implementing this use case.

The Acknowledge Order use case
Harry is responsible for implementing the Acknowledge Order use case:

X minutes before the scheduled delivery time, the system either emails or faxes
the order to the restaurant.

Table 2.5 Dick’s decisions

Strategy Decision Rationale

Business logic organization Domain Model pattern Even though the business logic is simple, it
fits with the existing domain model.

Database access JDO Using the Domain Model pattern.

Concurrency Optimistic locking The use case updates orders, which consist
of shared data in a single transaction.

Offline concurrency None The use case is a single transaction.

The system displays an order that has been sent to the restaurant. The restau-
rant’s order taker accepts or rejects the order. The system displays a confirma-
tion page. The restaurant’s order taker confirms that he or she accepts or rejects
the order. The system changes the state of the order to “ACCEPTED” or
“REJECTED.”

Making design decisions on a project 57
Harry determines that the business logic for this use case is quite simple and that
he can implement it using the Domain Model pattern. He decides that he must
use an offline locking pattern because this use case uses two database transactions:
one to read the order, and another to change the status of the order. Table 2.6
lists the design decisions that Harry makes.

Harry also forgets that the Order class needs to use an offline locking pattern.
 Chapter 13 looks at the different ways of implementing this use case.

The Modify Order use case
Finally, Wanda is responsible for implementing the Modify Order use case:

After analyzing the use case, Wanda makes the following decisions. Because the
business logic is complex, she decides to implement it using the Domain Model
pattern. Furthermore, Wanda thinks that she can reuse a lot of the pending order
code from the Place Order use case.

 Wanda also decides that she must use an offline concurrency pattern since the
business logic consists of multiple database transactions. Because it would be very

Table 2.6 Harry’s decisions

Strategy Decision Rationale

Business logic organization Domain Model pattern Even though the business logic is sim-
ple, it fits with the existing domain
model.

Database access JDO Using the Domain Model pattern.

Concurrency Optimistic locking The use case updates orders, which
are shared data.

Offline concurrency Optimistic Offline Lock pattern The use case reads the order in one
transaction and updates it in another.
The cost and probability of starting over
is small.

The customer service representative selects the order to edit. The system locks
and displays the order. The customer service representative updates the quanti-
ties and the delivery address and time. The system displays the updated order.
The customer service representative saves his changes. The system updates and
unlocks the order.

58 CHAPTER 2

J2EE design decisions
inconvenient for the user to start over if some other user changed the order
while she was editing it, Wanda decides to use the Pessimistic Offline Lock pat-
tern. Table 2.7 summarizes Wanda’s decisions.

Wanda plans to meet with Dick and Harry to reconcile their respective concur-
rency requirements.

 Chapter 13 looks at the different ways of implementing this use case.

2.8 Summary

This chapter describes how the task of designing the business and persistence
tiers can be broken down into five main design decisions: organizing business
logic; encapsulating business logic; accessing the database; handling database
transaction-level concurrency; and handling concurrency in long-running trans-
actions. Each decision has multiple options, and each option has benefits and
drawbacks that determine whether it makes sense in a particular situation.

 These decisions play a critical role in helping you decide between a POJO
approach and a heavyweight EJB 2 approach. Some decisions have POJO options
and heavyweight options. For example, you can encapsulate the business logic with
a POJO façade or an EJB session façade. Other decisions have options that are made
easier by using the POJO approach. For example, as we described in chapter 1, the
heavyweight approach favors business logic that is organized procedurally, whereas
the POJO approach enables you to use an object-oriented design.

 Now that we have reviewed the design decisions and their options, let’s exam-
ine each one in depth. In the next chapter, we first look at how to implement busi-
ness logic using the Domain Model pattern.

Table 2.7 Wanda’s decisions

Strategy Decision Rationale

Business logic organization Domain Model pattern Complex business logic.

Database access JDO Using the Domain Model pattern.

Concurrency Optimistic locking The use case updates orders, which
consist of shared data.

Offline concurrency Pessimistic Offline Lock
pattern

The use case reads the order in one
transaction and updates it in another.
The cost of starting over is high.

Part 2

A simpler, faster approach

Part 1 described some important design decisions you must make and each of
their different options. In part 2, you will learn about a combination of options
that is a particularly effective way to design applications with POJOs and light-
weight frameworks.

One of the great things about POJOs and lightweight frameworks is that they
enable you to tackle complex business logic using an object-oriented design. In
chapter 3, you will see how to implement the business logic as a domain model,
which is also known as an object model. You will learn how to develop a domain
model using a test-driven approach and mock objects.

Once you have developed a domain model, you invariably need to persist it. In
chapter 4, you will learn how to persist a domain model using an object/relational
mapping (ORM) framework. You will examine the key features of an ORM frame-
work and learn strategies for testing a persistence layer effectively.

Chapters 5 and 6 describe how to persist the domain model we developed in chap-
ter 3 using two popular ORM frameworks. Chapter 5 discusses JDO, and chapter 6
explores the issues you must solve when persisting a domain model with Hibernate.

In chapter 7, you will learn how to encapsulate the business logic with a POJO
façade instead of the traditional EJB session façade. This chapter describes how to
manage transactions with the Spring framework, and you will also see how to detach
JDO and Hibernate objects so that they can be returned to the presentation tier.

Using the Domain
Model pattern
This chapter covers
■ Organizing business logic as a domain model
■ Implementing a domain model with POJOs
■ Using a test-driven approach
■ Testing with mock objects
61

62 CHAPTER 3

Using the Domain Model pattern
Programming languages and techniques evolve as developers discover new and
better ways to build applications. In the 1990s, it was generally accepted that a
good way to tackle the complexity of applications was to use object-oriented (OO)
design techniques. Then, the end of that decade saw the arrival of Enterprise Java-
Beans (EJBs). Before using EJBs, I spent over a decade developing applications in
a variety of OO languages, including Common Lisp, C++, and Java. But OO design
became a lot less important and a lot more difficult when doing EJB development.
Even though many early enterprise Java applications were quite complex and
could have benefited from using an OO approach, there were, as I described in
chapter 1, cultural and technical obstacles to using such a strategy. Fortunately,
Java technologies have evolved to sweep those obstacles aside. By developing with
POJOs and lightweight frameworks, you can use OO design techniques in your
enterprise Java applications.

 This chapter describes the Domain Model pattern, which organizes the busi-
ness logic as a domain model. A domain model is an object model of the applica-
tion’s problem domain, which identifies the problems that the application is
trying to solve. The Domain Model pattern is important because it offers all of
the benefits of object-oriented development, including improved maintainability
and extensibility.

 In this chapter, you will learn how a domain model fits into the application’s
architecture and its relationship with the presentation tier and the persistence
framework. I also describe the structure of the domain model and show how to
decouple it from the database and other external components so that it can be
developed and tested more easily. You will learn how to develop a POJO domain
model using test-driven development techniques. Throughout this chapter I use
the domain model for the Place Order use case as an example.

3.1 Understanding the Domain Model pattern

The Domain Model pattern implements the business logic using good old-
fashioned object-oriented analysis and design techniques (OOAD). This pattern
uses OOAD to build an object model—the domain model—that is both a descrip-
tion of the problem domain and a blueprint for the design of the business logic.
An object model consists of classes corresponding to concepts from the problem
domain, which can make it easier to understand. Moreover, as I have mentioned
previously, an object model is an excellent way to tackle complex business logic.

 Business logic that is implemented using the Domain Model pattern is struc-
tured very differently than the traditional EJB design. Rather than the business

Understanding the Domain Model pattern 63
logic being concentrated in a few, large classes, a domain model consists of many
relatively small classes that have both state and behavior. For example, as you will
see later in this chapter, the domain model for the Food to Go application con-
sists of classes such as Order, Restaurant, and MenuItem.

 An important issue when using the Domain Model pattern is how to access the
database. Many of domain model classes are persistent and correspond to data in
the database. Unless the domain model is extremely simple, the application must
use an object/relational mapping (ORM) framework to persist the objects. In
chapters 4-6 you will learn how to persist a domain model with Hibernate and
JDO, which are two popular ORM frameworks, and chapter 10 will show you how
to persist the domain model with EJB 3.

 Let’s now look at how a domain model fits into the overall application archi-
tecture and its relationship with the presentation tier and persistence framework;
after that we will look at the structure of the domain model.

3.1.1 Where the domain model fits into the overall architecture

In an application where the business logic is organized using the Domain Model
pattern, the domain model is the core of the business tier. Consider, for example,
the application shown in figure 3.1, which consists of a presentation tier, a busi-
ness tier, and a persistence framework. As this diagram shows, the domain model
is invoked by either the presentation tier or by a façade that encapsulates the busi-
ness tier.

 The presentation tier handles HTTP requests from the user’s browser by call-
ing the domain model either directly or indirectly via a façade, which as I
described in the previous chapter is either a POJO or an EJB. Each request results
in one or more domain model methods being called. These methods perform
various business logic operations, including retrieving and validating data, per-
forming calculations, and updating the database.

 The persistent domain objects are unaware that they are persistent. They are
transparently mapped to the database by the persistence framework. Only a few of
the domain model classes (which are called repositories, as you will see later in this
chapter) explicitly call the persistence framework to create, find, and delete per-
sistent objects. As a result, we can develop almost the entire domain model with-
out having to worry about persistence. The domain model consists of POJOs, and
any calls to the persistence framework are hidden behind interfaces. In the next
chapter we will look at the topic of persistence in more detail, but for now let’s
examine the structure of the domain model.

64 CHAPTER 3

Using the Domain Model pattern
3.1.2 An example domain model

A domain model consists of a network of interconnected objects, many of which
have both state and behavior. As well as storing data, a domain model object usually
implements the business logic that operates on that data. Most of the classes in a
typical domain model are specific to the application’s problem domain. A banking
application’s domain model contains classes such as Account and Transaction
whereas the Food to Go application’s domain model contains classes such as Order
and Restaurant. It’s always helpful to see an example, so let’s focus on part of the
domain model for the Food to Go application, which is shown in figure 3.2.

Business Tier

Façade

<< session EJB>>
PlaceOrderFaçade

Domain Model

Presentation Tier

<<pojo>>
PlaceOrderFaçade

Web Component ...

Persistence Framework

Database

PlaceOrderService

...PendingOrder Restaurant PendingOrder
Repository

Figure 3.1
The relationship of the domain
model with parts of the application

Understanding the Domain Model pattern 65
There are lots of details on this diagram, but let’s focus on the important classes.
The key classes are as follows:

■ PlaceOrderService: Defines methods that correspond to steps of the Place
Order use case and update domain model objects.

■ PendingOrder: This application’s shopping cart. PendingOrder has a delivery
time attribute and a delivery address, a collection of line items, an associ-
ated restaurant, and a coupon. Each line item has a quantity attribute and
an associated MenuItem.

■ Restaurant: Represents a restaurant that prepares food for delivery. A res-
taurant has a name attribute and one or more menu items available for
delivery, a geographic service area (which consists of a set of ZIP codes),
and opening hours.

■ MenuItem: Describes a menu item and has a name, a description, and a price.

updateDeliveryInfo()
updateRestaurant()
getTotal()
...

deliveryTime
PendingOrder

getExtendedPrice()

quantity

PendingOrder
LineItem

Name
serviceArea

Restaurant

findRestaurant()
findAvailableRestaurants()
...

<<interface>>
Restaurant Repository

updateDeliveryInfo()
updateRestaurant()
getTotal()
...

Order

getExtendedPrice()

quantity

OrderLineItem

street1
city
state
...

Address

name
price

MenuItem

Payment
Information

Address

Payment
Information

findOrCreatePendingOrder()

<<interface>>
PendingOrderRepository

create()
find()

<<interface>>
OrderRepository

calculateDiscount()

<<interface>>
Coupon

<<interface>>
Coupon

updateDeliveryInfo()
updateRestaurant ()
...

PlaceOrderService

TimeRange

opening hours

Figure 3.2 Domain model–based business logic for the Food to Go application

66 CHAPTER 3

Using the Domain Model pattern
■ TimeRange: Consists of a day of the week, as well as the start and end time.

■ Order: Represents an order that is created at the end of the Place Order use
case. Like PendingOrder it has a delivery address, line items, and a restau-
rant, and it can also have a coupon. In theory we could have used the Order
class to represent both the order being entered and the placed order, but
this would have made the application more complex. Using two separate
classes simplifies the design.

■ Coupon: Represents a discount that can be applied to an order. Coupons are
identified by a code and are valid only for a specified time period. The Coupon
class is another example of the Strategy pattern. Like the OverdraftPolicy
you saw in chapter 1, it is an interface and has several implementations—one
for each kind of coupon.

■ PendingOrderRespository: Defines methods for finding and creating
PendingOrders.

■ OrderRepository: Defines methods for finding and creating orders.

■ RestaurantRepository: Defines methods for finding restaurants.

There are also some other classes such as the Address class, which represents an
address, and PaymentInformation, which stores payment information.

 This is a pretty simple domain model, but it still has quite a few classes. A com-
plete domain model for an enterprise application would contain a great many
more. Finding your way around a large domain model can be a lot easier if you
know the roles the different classes play.

3.1.3 Roles in the domain model

Even though domain models from different problem domains are wildly differ-
ent, the classes can be categorized by their role in the domain model. Identifying
the role that a class plays can make it easier to name the class and help with the
designing the domain model. As you will see, a class’s role implies certain kinds of
responsibilities and relationships with other classes in the domain model. Under-
standing these roles will help you develop your own domain model.

 There are several different naming conventions for roles. My favorite scheme is
based on the one in Domain-Driven Design [Evans 2003] and has the following roles:

■ Entities—Objects with a distinct identity

■ Value objects—Objects with no distinct identity

■ Factories—Define methods for creating entities

Understanding the Domain Model pattern 67
■ Repositories—Manage collections of entities and encapsulate the persistence
framework

■ Services—Implement responsibilities that can’t be assigned to a single class
and encapsulate the domain model

Let’s now look at each of these roles.

Entities
Entities are objects that have a distinct business identity that is separate from the
values of their attributes. Two entities are different even if the values of their
attributes are the same and cannot be used interchangeably. Identifying entities is
important because they often correspond to real-world concepts and are central
to the domain model. Examples of entities in this application are PendingOrder,
Order, and Restaurant.

Value objects
Value objects are objects that are primarily defined by the value of their attributes.
They are often immutable, which means that once they are created they cannot
be updated. Two instances whose attributes have the same values can be used
interchangeably. Examples of value objects in this domain model include
PaymentInformation and Address.

Factories
A Java application creates objects by using the new operator. Sometimes, using the
new operator directly is sufficient, but if you need to instantiate a complex graph
of objects or you need to vary the types of the objects that are created, then you
might need to use a factory. A factory defines methods for creating entities. It
encapsulates the mechanism that instantiates a graph of objects and connects
them together, which simplifies the client code.

Repositories
Repositories manage collections of entities and define methods for finding and
deleting entities. They can also play the role of factories if the factory code is sim-
ple. A repository encapsulates the persistence framework and consists of an inter-
face and an implementation class. The interface defines the methods that can be
called by the repository’s client, and the implementation class implements the
interface by calling the persistence framework. Because the persistence frame-
work is encapsulated behind an interface, you can focus on developing the busi-
ness logic without being slowed down or distracted by database issues.

68 CHAPTER 3

Using the Domain Model pattern
Services
The fifth and final kind of objects that are found in a domain model are services,
which implement the workflow of the application. These classes are the driving
force of the application, with the methods that fulfill a use case. Generally, ser-
vices include behaviors that cannot be assigned to a single entity and consist of
methods that act on multiple objects. An example of a service in this domain
model is PlaceOrderService, which defines methods corresponding to the steps
of the Place Order use case.

 A service consists of an interface and an implementation class. It is invoked by
the domain model’s client, which is either the façade or the presentation tier. A
service method rarely implements a significant amount of business logic. Instead,
a typical service method retrieves objects using a repository and then delegates to
them. For example, PlaceOrderService calls RestaurantRepository and Pending-
OrderRepository and mostly delegates to PendingOrder.

 The methods defined by a domain model service are very similar to those
defined by a session façade or a POJO façade. The methods usually correspond to
the steps of the use case. However, a service, unlike a façade, doesn’t deal with such
things as performing transactions, gathering the data that must be returned to the
presentation tier, detaching objects, and all of the other things that the façade has
to deal with. Instead, it just focuses on pure business logic. Keeping the service sep-
arate from the façade is useful because you can work on the service and the rest of
the domain model without worrying about “plumbing” and other infrastructure
issues. In fact, as you will see in the next section, the service is a good place to start
when implementing a domain model.

3.2 Developing a domain model

Now that you have seen what a domain model is and how it fits in to the overall
architecture of an application, let’s take a step back and see how to go about
developing one from scratch. The process of developing a domain model takes
the application’s requirements, which are typically use cases or stories, and creates
an executable and tested domain model. There are many ways to develop a
domain model, and you could very well have your own preferred strategy. In this
section I’m going to describe a simple, informal approach that has worked well
for me in the past. It’s an approach that you can use to develop a domain model
for your application.

Developing a domain model 69
3.2.1 Identifying classes, attributes, and relationships

Designing a domain model, like many other software design activities, requires
both a solid understanding of the problem domain as well as a certain amount of
creativity, experience, and common sense. A good way to start is by talking to the
businesspeople who understand the problem domain and by analyzing the use
cases. Quite often the nouns that are used when describing the problem domain
suggest class names. Applying UML and Patterns [Larman 2004] offers an in-depth
discussion of how to identify classes, their attributes, and associations.

 Not surprisingly, in the case of the example application, the Food to Go busi-
nesspeople and the Place Order use case both use terms such as Order, Restau-
rant, Menu Item, Coupon, Address, and Payment Information, which are all
plausible classes. Furthermore, we know from past experience that this applica-
tion requires a shopping cart concept, which means that we need some classes to
accumulate information about the order. Analyzing the domain and applying a
small amount of creativity yields the domain model shown in figure 3.3.

 This domain model is a simplified version of the one you saw earlier in figure 3.2.
In this version of the domain model, the classes only have attributes and relation-
ships; the methods have not yet been identified. Furthermore, this domain model
only defines entities such as PendingOrder and Restaurant and value objects such
as Address and TimeRange. It does not define PendingOrderRepository, Restaurant-
Repository, OrderRepository, or PlaceOrderService. Although it would be reason-
able to assume the existence of those classes, we will instead identify them as we
determine the behavior for the domain model classes in the next section.

3.2.2 Adding behavior to the domain model

So far, the classes in the domain model have only attributes and associations. This
is certainly a necessary first step, but we need to bring the domain model to life by
adding behavior. To determine their behavior, we must identify their responsibili-
ties and collaborations. The responsibility of a class is what the class does, knows, or
decides and is fulfilled by one or more methods. The domain model in figure 3.1
describes what each class knows because it defines attributes and associations.
What it doesn’t describe are responsibilities that concern what each class does or
decides. The collaborations of a class are the other classes that it invokes in order to
fulfill its responsibilities. The domain model in figure 3.1 outlines some of the
possible collaborations because it describes associations between classes. However,
as we will see, many more are waiting to be discovered.

70 CHAPTER 3

Using the Domain Model pattern
So how to do we go about determining the responsibilities and collaborations?
Many books have been written about OO design that describe a variety of tech-
niques ranging from the more formal, UML-based responsibility driven design
[Wirfs-Brock 2002] to the less formal, code-based test-driven development [Beck
2002]. In this chapter I am going to describe my favorite approach, which consists
of the following steps:

1 Identify the requests that the application must handle by analyzing the
requirements (use case, or story) or UI design.

2 Determine the interface (types and methods) that the domain model
must expose in order to enable the presentation tier and the business
tier’s façades to handle those requests.

Date deliveryTime

PendingOrder

name
serviceArea: Set<String>

Restaurant

selected
restaurant

street 1
street 2
city
state
zip

Address

Payment
Information

delivery
address

payment
information

name
description
price

MenuItem

line items

0..1

0..1
*

1

+

0..1

Date deliveryTime

Order

selected
restaurant

payment
information

quantity

OrderLineItem

line items

+

menu item

delivery
address

menu items {Ordered}

menu item

code
validFrom
validTo

Coupon
0..1 0..1

dayofWeek
openingTime
closingTime

TimeRange

opening hours

*
quantity

PendingOrder
LineItem

Figure 3.3 The initial domain model for the Food to Go application, consisting of classes, their
attributes, and associations

Developing a domain model 71
3 Implement the interface using a test-driven approach by considering each
request in turn.

Let’s first look at each one of these steps and then see how they are applied.

Identifying requests
The first step in adding behavior to the domain model is to identify the requests
that the application must process and determine how it responds to them. When
the application receives a request from its client, it must process the request and
send back the appropriate response. For example, in a web application, when a
user performs some action such as filling in a form or making a selection by click-
ing on a link, their browser sends an HTTP request and the application sends back
an HTML page. The presentation tier handles requests by directly or indirectly call-
ing the domain model, which performs the calculations, updates the database, and
retrieves the required data. Consequently, we can determine the interface—types
and methods—that the domain model must expose by analyzing the requests.

 We can identify the requests that the application must process by analyzing
either the UI design or the application’s use cases or stories. The UI design speci-
fies the user’s actions, such as form submissions and mouse clicks, and clearly
specifies the requests that must be processed by the application. Use cases often
define a sequence of requests. For example, consider the Place Order use case
that you first saw in chapter 2:

The customer enters the delivery address and time. The system first verifies that
the delivery time is in the future and that at least one restaurant serves the deliv-
ery information. It then updates the pending order with the delivery informa-
tion, and displays a list of available restaurants.

The customer selects a restaurant. The system updates the pending order with
the restaurant and displays the menu for the selected restaurant.

The customer enters quantities for each menu item. The system updates the
pending order with the quantities and displays the updated pending order.

The customer enters payment information (credit card information and billing
address). The system updates the pending order with the payment information
and displays the pending order with totals, tax, and charges.

The customer confirms that she wants to place the order. The system authorizes
the credit card, creates the order, and displays an order confirmation, which
includes the order number.

72 CHAPTER 3

Using the Domain Model pattern
Each paragraph of the use case consists of two parts. The first part describes the
user performing an action such as entering values or making a selection and cor-
responds to an HTTP request in a web-based application. The Place Order use
case implies that the application has to process the following requests:

■ Enter delivery info—The customer enters the delivery information.

■ Select restaurant—The customer selects a restaurant.

■ Update quantities—The customer enters quantities of menu items.

■ Check out—The customer indicates that they are done entering quantities.

■ Enter payment information—The customer enters the payment information.

■ Place order—The customer confirms that they want to place the order.

The second part of each paragraph in the use case describes the application’s
response to the request. The application response can be described by a set of
responsibilities. For example, the application processes the enter delivery info
request by:

■ Verifying that the delivery time is in the future and that at least one restau-
rant serves the delivery information

■ Updating the pending order with the delivery information

■ Displaying a list of available restaurants.

The application’s responsibilities fall into two main categories. The first kind of
responsibility is one that verifies or validates user input, calculates values, and
updates the database. Typically either services or entities must define methods to
fulfill these responsibilities. The second kind of responsibility is one that displays
values. Although the presentation tier is responsible for displaying data, the
domain model is responsible for providing the data. Typically, either entities or
repositories must define methods that return the required data. Each responsibil-
ity corresponds to one or more domain model methods, and so the first step in
implementing a responsibility is to define the methods and assign them to classes.

Identifying methods
Once we have determined the requests and how the application responds to each
one, the next step is to determine what methods the domain model classes must
provide in order to make this possible. As we saw in figure 3.1, when the applica-
tion handles a request, the domain model’s client—a façade or presentation
tier—makes one or more calls to the domain model to validate the request, per-
form calculations, and update the database. It also calls the domain model to get

Developing a domain model 73
the data that it displays to the user. To begin the process of writing the business
logic, we must identify the methods that are called by the domain model’s client
and determine its parameters, its return type, and the class to which it belongs.

 For each request, we typically define a service method that does the bulk of the
work, including validating the request, performing calculations, and updating the
database. We also define other entity and repository methods that return data to
display. To see how to do this, let’s identify the methods that the domain model
classes must define to handle the enter delivery info request. The Food to Go appli-
cation processes this request in two steps. First, it must verify that delivery infor-
mation and update PendingOrder. Second, it must display the list of available
restaurants. Let’s consider each responsibility in turn.

 The first responsibility belongs to the business tier because it consists of verifying
user input based on the available set of restaurants, which are presumably stored in
the database and updating PendingOrder, which is a domain object. The domain
model’s client could call PendingOrder directly to verify and store the delivery
information. But as I described earlier, a domain model service is a better choice to
handle this request because it provides superior encapsulation and moves more
logic into the domain model, which simplifies the domain model’s client.

 This domain model does not have any services, so we need to define one.
The simplest thing to do is define a service for the Place Order use case called
PlaceOrderService. It has an updateDeliveryInfo() method, which verifies that
the delivery information is served by at least one restaurant and updates the
PendingOrder:

public interface PlaceOrderService {
bbbbbbbbbbPlaceOrderServiceResult updateDeliveryInfo(String pendingOrderId,
 bbbbbbbbbbAddress deliveryAddress,
 bbbbbbbbbbDate deliveryTime);

 …
}

public class PlaceOrderServiceResult {
 private int statusCode;
 private PendingOrder pendingOrder;
 …
}

This code takes the pendingOrderId and delivery information as parameters. The
pendingOrderId parameter is the primary key of PendingOrder in the database,
and is stored by the presentation tier in either HttpSession or the browser. The
deliveryAddress and deliveryTime parameters contain the values entered by
the user.

74 CHAPTER 3

Using the Domain Model pattern
 The updateDeliveryInfo() method returns a PlaceOrderServiceResult that
contains a status code and PendingOrder. The status code indicates the outcome of
verifying the delivery information. This method returns PendingOrder because it is
needed by caller. It is, for example, displayed by the presentation tier.

 The other responsibility when processing the enter delivery info request is dis-
playing the list of available restaurants. This responsibility primarily belongs to the
presentation tier because it consists of displaying data. However, the domain
model must provide a way to find the available restaurants. Finding the available
restaurants is a database query, which is encapsulated by a repository.

 Because we are finding restaurants, it makes sense to add a RestaurantReposi-
tory to the domain model and make it responsible for retrieving the list of available
restaurants. We define a findAvailableRestaurants() method that takes the deliv-
ery information as a parameter and returns the list of restaurants that serve it:

public interface RestaurantRepository {
 bbbbbbbbbbList findAvailableRestaurants(Address deliveryAddress,

 Date deliveryTime);
…
}

In addition, since the presentation tier displays each restaurant’s name and type,
the Restaurant class must define getters that return these values:

public class Restaurant {
 public String getName() { … }
 public String getType() { … }
…
}

The getName() method returns the name of the restaurant and the getType()
method returns its type.

 The presentation tier or the façade first calls the PlaceOrderService to update
the PendingOrder and then calls RestaurantRepository to retrieve the available
restaurants. PlaceOrderService doesn’t return the list of available restaurants
because, if it did, it would be tightly coupled to the UI design. It is better to decou-
ple services from the UI and let the domain model’s client make extra calls to the
domain model to get the data that it needs to display. The façade or the presenta-
tion tier calls the domain model service to update the domain model and calls
repositories to get the data that is displayed to the user. It is important to remem-
ber that the domain model is invoked via local calls, and so there is no overhead
associated with multiple calls.

Developing a domain model 75
 As you can see, we can analyze a use case and identify the methods that are
called by the domain model’s client. We can use this process to analyze the other
steps of the Place Order use case and identify additional methods. Once you have
identified these methods, the next step is to implement them.

Implementing methods using test-driven development
At this point in the development process, we have identified methods specified by
the PlaceOrderService and RestaurantRepository interfaces and some simple
getters defined by the Restaurant class. We now need to implement these meth-
ods. There are several ways to go about this. My favorite approach is to use test-
driven development [Beck 2002], which is an informal, code-centric, and incre-
mental development technique. When using test-driven development, you first
write automated unit test cases for the new functionality. You then write the code
that implements the functionality and makes the tests pass.

 For example, when using test-driven development to implement a service
method such as PlaceOrderService.updateDeliveryInfo(), you begin by writing
one or more test cases. Each test calls the method with a particular combination
of arguments and verifies that it correctly updates PendingOrder and returns the
expected result. After writing the tests, you then implement the service method
and make them pass. The output of test-driven development is working and tested
code and automated test cases. In addition to ensuring that the code works, the
tests document the expected behavior of the application.

 In order to successfully use test-driven development, you need a development
environment that provides immediate feedback to small changes. The process of
writing a test and making it pass happens many times a day. Refactoring, a process
that improves the design and that we describe in a moment, also consists of mak-
ing small changes and testing them. As a result, it is common to go through the
edit-compile-debug cycle every couple of minutes or even less. You can’t wait for
EJBs to deploy or for the database to be rebuilt if you want to be productive. As you
can see, test-driven development and lightweight technologies work well together.

The importance of refactoring your code
Test-driven development is very different from development techniques that
involve a lot of up-front design because the design incrementally evolves as more
tests are written. But one risk of evolving a design is that you could end up with an
unstructured mess. To prevent this from happening, it’s important to periodically
refactor the code.

76 CHAPTER 3

Using the Domain Model pattern
 Refactoring is a process that improves the design without changing its behav-
ior and is done once the tests for the new functionality pass. Examples of refactor-
ing techniques include extracting duplicated code into a method and introducing
a superclass that implements common behavior. A good way to refactor code is to
make a series of small changes and run the tests after every change. Refactoring is
an essential part of test-driven development that will help you develop a well-
designed application. For more information about refactoring, please see Fowler
[Fowler 1999].

The benefits of using JUnit
While it is certainly possible to write the tests from scratch, it’s rarely a good idea.
A much better approach is to use a testing framework such as JUnit [JUnit], which
provides classes that make it easier to write and run tests. It handles exceptions
and reports test failures; provides methods for making assertions about the out-
come of calling a method; and enables you to organize tests into a hierarchy of
test suites. In addition, IDEs such as Eclipse [Eclipse] provide a GUI for running
JUnit tests. There are also various JUnit extensions that provide additional fea-
tures such as JMock, which I discuss a bit later. For more information about JUnit,
please see JUnit in Action [Massol 2003] and JUnit Recipes [Rainsberger 2004].

Simplifying and speeding up tests with mock objects
I’m a big fan of test-driven development and believe that rigorous automated test-
ing is essential if you want to successfully develop software without chaos and long
nights spent tracking down bugs. But writing tests can be difficult because of all
the setup code you must write. Moreover, if you have written a lot of tests they can
take a very long time to run, especially if they access a database. On a couple
projects that I’ve worked on, as more and more tests were written, it eventually
took over 30 minutes to run them. This might not sound like a long time, but it
was a big source of frustration that slowed down development because everyone
was required to run the tests prior to checking in their changes.

 The main reason why a class’s tests can be difficult to write and slow to execute
is because of its collaborators. Most classes are not standalone and instead collab-
orate with one or more other classes. For example, later on you will see how Place-
OrderService calls several other domain model classes, including PendingOrder,
RestaurantRepository, and PendingOrderRepository. Collaboration is generally a
good thing because it keeps the class small. It is also essential if the class must access
external resources such as a database, because in order to do that, it must use other
classes such as those provided by JDBC. But collaboration can make testing difficult:

Developing a domain model 77
■ Top-down development and testing is tricky—You must implement the collabora-
tors before you can write any of a class’s unit tests. This, for example, makes
it impossible to develop and test a service before such as PlaceOrderService
before implementing the domain model classes that it calls. We are forced
to immediately dive into the details of the domain model.

■ Creating and initializing the collaborators makes a class’s tests more complicated—
Some objects require complex initialization in order to get them into the
correct state for a test. For example, if we wanted to test the scenario where
PlaceOrderService.updateDeliveryInfo() is called with the ID of a pend-
ing order that has already been placed, we would have to call multiple
methods on a PendingOrder to get it into the “Placed” state. This makes writ-
ing tests a lot more difficult.

■ Collaborators introduce undesirable coupling—For example, using real imple-
mentations of the repositories would couple the domain model to the data-
base and force us to address persistence issues. This is more complexity
than we should tackle at this point. Furthermore, the overhead of accessing
the database slows down the tests.

Fortunately, we can solve this problem by using mock objects. A mock object is a fake
implementation that is used solely for testing. A test will configure a mock object
to expect certain method calls and to return predetermined values. The mock
object will throw an exception if its expectations are not met. By using mock
objects, we simulate a domain object’s collaborators without having to implement
them. Also, by mocking repositories, we do not have to deal with persistence
issues and can write tests that run without database. Using mock objects allows us
to simplify otherwise complex object interactions, enabling us to focus on one
piece of the application at a time.

 If the class that you want to test invokes a collaborator via an interface, then
one way to implement a mock object is to simply define a fake class that imple-
ments that interface. A test case for PlaceOrderService, which uses the Restau-
rantRepository interface, could define a dummy class that implements the
RestaurantRepository interface, whose methods return test values. Although this
approach works well in very simple cases, writing the fake classes can easily
become pretty tedious. Moreover, you can only use this approach if there is an
interface to implement.

 A much better way to implement mock objects is to use mock object testing
frameworks. Not only do they make it easier to write tests, but they also support
mocking of concrete classes. There are several mock object testing frameworks,

78 CHAPTER 3

Using the Domain Model pattern
including EasyMock [EasyMock] and jMock [jMock]. EasyMock and jMock are both
extensions to JUnit, and provide classes for creating and configuring mock objects.

 Let’s look at a simple example of how to use jMock, which is my personal favorite
since it appears to be a little more flexible than the others. Imagine you needed to
write a test for PlaceOrderService.updateRestaurant(), which calls RestaurantRe-
pository.findRestaurant(). Instead of hand-coding a fake RestaurantRepository,
you use jMock to create a mock RestaurantRepository and configure it to expect
its findRestaurant() method to be called. jMock will throw an exception if either
some other method was called unexpectedly or the expected method was not called.
Listing 3.1 shows an excerpt of a test case for PlaceOrderService that does this.

public class PlaceOrderServiceTests
 extends MockObjectTestCase {
 private Mock mockRestaurantRepository;
 private Restaurant restaurant;
 private PlaceOrderService service;

 public void setUp() {
 mockRestaurantRepository =
 new Mock(RestaurantRepository.class);
 RestaurantRepository restaurantRepository =
 (RestaurantRepository)mockRestaurantRepository.proxy();
 service =
 new PlaceOrderServiceImpl(restaurantRepository);
 restaurant = new Restaurant();
 }

 public void testUpdateRestaurant_good() throws Exception {
 mockRestaurantRepository.expects(once())
 .method("findRestaurant")
 .with(eq(restaurantId))
 .will(returnValue(restaurant));

 PlaceOrderServiceResult result
 = service.updateRestaurant(
 pendingOrderId,
 restaurantId);
…
 }

…

Listing 3.1 An example of a test case that uses jMock

B

C
D

E

F

G

Developing a domain model 79
PlaceOrderServiceTests extends MockObjectTestCase, which is provided by
jMock.

The setUp() method creates the mock RestaurantRepository.

It gets the jMock-created proxy, which implements the RestaurantRepository
interface.

The setUp() method creates the PlaceOrderServiceImpl, passing the proxy to its
constructor.

The testUpdateRestaurant_good() method configures the mock Restaurant-
Repository to expect its findRestaurant() method to be called with a particular
restaurantId and to return the test Restaurant.

The test calls the service method, which then calls the mock restaurant.

The two key classes provided by jMock are Mock and MockObjectTestCase. The
Mock class is used to create a mock object that behaves as if it is an instance of the
class or interface passed to the Mock class’s constructor. A test case can access the
mock object by calling proxy() and downcasting the result to the correct type.
The expectations for the mock are defined by calling various methods on the Mock
class, including the Mock.expects() method. A mock object will throw an excep-
tion if a method is called unexpectedly. In addition, a test case can verify that all
of the expected methods were called by calling Mock.verify(), which will throw
an exception if any were not.

 MockObjectTestCase is a subclass of the JUnit TestCase that is used for writing
mock object tests. It provides convenience methods such as eq() and return-
Value() that are used for configuring expectations. In addition, it automatically
calls verify() on any fields of type Mock and verifies that all methods were called
as expected.

 Using a mock object framework such as jMock enables you to implement a
domain model in a top-down fashion starting from the service and repository
interface methods that are derived from the requirements. After implementing
one domain model class and testing it with mock objects, we will have identified
the methods that its collaborators must implement. We can then repeat the pro-
cess for each of those classes. We write tests for each of their methods and use
mock objects for their collaborators. This process is repeated until all of the
classes and methods have been implemented. At the end of the process, we have
an executable and tested domain model consisting of POJOs. Let’s look at an
example of how this is done.

C

D

E

F

G

B

80 CHAPTER 3

Using the Domain Model pattern
3.3 Implementing a domain model: an example

In this section you will see an example of how the techniques described in the pre-
vious section can be used to develop a domain model. I show how to do this by
developing the methods that are called to handle the enter delivery information
request. I first implement the PlaceOrderService’s updateDeliveryInfo()

method we identified earlier. After that, I show how to implement a PendingOrder
method, which is called by updateDeliveryInfo(). The end result is working and
tested PlaceOrderService and PendingOrder methods that verify the delivery
information and update PendingOrder. The required repository methods are also
identified. By studying this small example, you will learn an effective way to
develop and test a domain model. Since the repository methods call the persis-
tence framework, we won’t implement those until chapters 4-6.

3.3.1 Implementing a domain service method

PlaceOrderService, which is a domain model service, has an updateDelivery-
Info() method that is invoked when the user enters the delivery information.
This method has the following signature:

public interface PlaceOrderService {
 PlaceOrderServiceResult updateDeliveryInfo(String pendingOrderId,
 bbbAddress deliveryAddress,
 bbbDate deliveryTime);
}

Its parameters consist of pendingOrderId, which is the primary key of Pending-
Order in the database, and the deliveryAddress and deliveryTime parameters,
which specify the delivery information. It returns a PlaceOrderServiceResult,
which consists of a status code and PendingOrder.

 When updateDeliveryInfo() is invoked, PlaceOrderService retrieves Pending-
Order or creates one if it does not exist. It then does one of the following:

■ If the delivery time is in the future and the delivery information is served by
at least one restaurant, PlaceOrderService updates PendingOrder with the
new delivery information. It returns a PlaceOrderServiceResult containing
a successful status code and PendingOrder.

■ If the delivery address and time are not served by any restaurant or the
delivery time is not in the future, PlaceOrderService leaves PendingOrder
unchanged. It returns a PlaceOrderServiceResult containing a status code
indicating failure and PendingOrder.

Implementing a domain model: an example 81
The test for the first scenario calls updateDeliveryInfo() with valid delivery infor-
mation and verifies that it updates PendingOrder. Each of the tests for the other sce-
nario calls updateDeliveryInfo() with invalid delivery information and verifies
that it returns an error code and leaves the PendingOrder unchanged. When doing
test-driven development we write tests for each of these scenarios and use them to
drive the design of PlaceOrderService. Let’s look at the test for the first scenario.

Writing a test
Listing 3.2 shows a JUnit-based test case for the successful scenario. This test case
calls updateDeliveryInfo() with valid delivery information and verifies that it
returns the expected result. Because it is a unit test, it doesn’t need to use Spring
to construct the service. It simply instantiates PlaceOrderServiceImpl using new,
invokes a method, and verifies that it returns the correct result.

public class PlaceOrderServiceTests extends TestCase {

 private PlaceOrderService service;

 public void setUp() throws Exception {
 service = new PlaceOrderServiceImpl();
 }

 public void testUpdateDeliveryInfo_Valid() throws Exception {
 Address deliveryAddress =
 makeGoodDeliveryAddress();
 Date deliveryTime = makeGoodDeliveryTime();

 String pendingOrderId = null;

 PlaceOrderServiceResult result =
 service.updateDeliveryInfo(
 pendingOrderId,
 deliveryAddress,
 deliveryTime);

 PendingOrder pendingOrder = result.getPendingOrder();

 assertTrue(result.isSuccess());
 assertEquals(
 deliveryAddress,
 pendingOrder.getDeliveryAddress());
 assertEquals(deliveryTime,
 pendingOrder.getDeliveryTime());

 }

Listing 3.2 The valid delivery information test case

B Creates
PlaceOrderServiceImpl

C Creates
test data

D Calls the
service

E Verifies the
outcome

82 CHAPTER 3

Using the Domain Model pattern
Let’s take a closer look:

The setup() method creates PlaceOrderServiceImpl.

The test method calls makeGoodDeliveryAddress() and makeGoodDeliveryTime(),
which are helper methods that create the test delivery information.

The test method calls the service.

The test method verifies that the call to the service succeeds and that the delivery
information was stored in the pending order.

Let’s look at what needs to be done to get this test to compile and pass.

Implementing the method
After writing a test case, the next step is to write some code to make it compile and
pass. We need to define the PlaceOrderServiceImpl class and write an update-
DeliveryInfo() method. To write this method, we need to determine which of its
responsibilities it handles directly and which it handles by calling other objects. If
you carefully examine the description of the method given earlier, you will see that
it has four key responsibilities:

1 Finds or creates the PendingOrder

2 Verifies that the delivery time is in the future and that the delivery infor-
mation is served by at least one restaurant

3 Updates PendingOrder

4 Creates PlaceOrderServiceResult

Let’s look at each one of these responsibilities in turn, beginning with how Place-
OrderService finds or creates PendingOrder. Earlier in this chapter I described
how repositories are responsible for creating and finding entities. Consequently,
PlaceOrderService must call a PendingOrderRepository to find or create Pending-
Order. PendingOrderRepository has a findOrCreatePendingOrder() method that
returns PendingOrder.

 The business logic implemented by this method validates the delivery informa-
tion by checking that the delivery time is in the future and by calling a repository
to verify that there is at least one restaurant in the database that serves the delivery
information. PlaceOrderService could be responsible for validating the delivery
information and then updating PendingOrder by calling setters. However, this is not
a very robust design since PendingOrder should be responsible for ensuring the

B

C

D

E

Implementing a domain model: an example 83
validity of its state. A better approach is for PendingOrder to have an updateDeliv-
eryInfo() method that verifies the delivery information and updates PendingOrder.

 PlaceOrderService can handle the fourth responsibility itself by instantiating
PlaceOrderServiceResult. PendingOrder just needs to return a status code indicat-
ing whether or not the delivery information was valid.

 Now that we have figured out how these responsibilities are assigned, let’s look
at the code for the updateDeliveryInfo() method. Listing 3.3 shows the Place-
OrderServiceImpl class and its updateDeliveryInfo() method.

public class PlaceOrderServiceImpl implements PlaceOrderService {

 private PendingOrderRepository pendingOrderRepository;

 public PlaceOrderService(PendingOrderRepository repository) {
 this.pendingOrderRepository = repository;
 }

 public PlaceOrderServiceResult updateDeliveryInfo(
 String pendingOrderId,
 Address deliveryAddress,
 Date deliveryTime) {
 PendingOrder pendingOrder =
 pendingOrderRepository
 .findOrCreatePendingOrder(

pendingOrderId);
 boolean success =
 pendingOrder.updateDeliveryInfo(
 deliveryAddress,
 deliveryTime);
 return new PlaceOrderServiceResult(success, pendingOrder);
 }

}

Here’s what this code does:

PlaceOrderServiceImpl is configured with PendingOrderRepository via construc-
tor injection. It has a constructor that takes PendingOrderRepository as a parame-
ter, and stores it in a field. Later in chapter 7 you will see how the Spring
framework is used to instantiate and configure PlaceOrderServiceImpl.

The updateDeliveryInfo() method calls PendingOrderRepository to get Pending-
Order.

Listing 3.3 PlaceOrderServiceImpl

Takes
PendingOrderRepository parameter B

C Gets PendingOrder from
PendingOrderRepository

D Invokes
PendingOrder

E
Creates

PlaceOrderServiceResult

B

C

84 CHAPTER 3

Using the Domain Model pattern
This method invokes PendingOrder.

The updateDeliveryInfo() method creates and returns a PlaceOrderService-
Result that contains the status and the PendingOrder.

PlaceOrderService collaborates with the PendingOrderRepository and Pending-
Order classes. Implementing the PendingOrder and PendingOrderRepository
classes at this stage would be a distraction from implementing PlaceOrderService.
If we implemented the PendingOrder class we would have to dive into the details
of the business logic, and if we implemented PendingOrderRepository we would
have to deal with ORM issues. A better approach for the tests is for the Place-
OrderService to use mock object implementations.

 To do this with jMock, however, we do need to at least define the PendingOrder-
Repository interface and write a stub implementation of PendingOrder. The Pend-
ingOrderRepository interface defines the findOrCreatePendingOrder() method:

public interface PendingOrderRepository {
 PendingOrder findOrCreatePendingOrder(String pendingOrderId);
}

The PendingOrder class defines a stub for the updateDeliveryInfo() method,
which we will fill in later:

public class PendingOrder {
 public boolean updateDeliveryInfo(Address deliveryAddress,
 Date deliveryTime) {
 return false;
 }
}

The stub for the updateDeliveryInfo() method returns false.

Finishing the test
We’ve written the updateDeliveryInfo() method and defined the PendingOrder-
Repository interface and PendingOrder class, but at this point we need to revise the
test we wrote earlier. It no longer compiles because PlaceOrderServiceImpl’s con-
structor now expects to be passed a PendingOrderRepository. In addition, the test
must create and configure mocks for PendingOrder and PendingOrderRepository.
The mock PendingOrderRepository expects to have its findOrCreatePending-
Order() method called and returns a mock PendingOrder. PendingOrder expects to
have its updateDeliveryInfo() method called. Listing 3.4 shows the updated test.

E

D

Implementing a domain model: an example 85
public class PlaceOrderServiceTests
 extends MockObjectTestCase {

 private Mock mockPendingOrder;
 private Mock mockPendingOrderRepository;

 private PendingOrder pendingOrder;
 private String pendingOrderId;
 private Date goodDeliveryTime;
 private Address goodDeliveryAddress;
 private PlaceOrderService service;

 public void setUp() throws Exception {
 mockPendingOrderRepository =
 new Mock(PendingOrderRepository.class);

 PendingOrderRepository pendingOrderRepository =
 (PendingOrderRepository)
 mockPendingOrderRepository.proxy();
 service = new PlaceOrderServiceImpl
bbbb➥ (pendingOrderRepository);

 mockPendingOrder =
 new Mock(PendingOrder.class);
 pendingOrder =
 (PendingOrder)
 mockPendingOrder.proxy();

 goodDeliveryAddress = new Address(…);
 goodDeliveryTime = new Date();

 pendingOrderId = "pendingOrderId";
 }

 public void testUpdateDeliveryInfo_Good() throws Exception {

 mockPendingOrderRepository
 .expects(once())
 .method("findOrCreatePendingOrder")
 .with(eq(pendingOrderId))
 .will((returnValue(pendingOrder)));

 mockPendingOrder
 .expects(once())
 .method("updateDeliveryInfo")
 .with(eq(goodDeliveryAddress),
 eq(goodDeliveryTime))
 .will((returnValue(true)));

Listing 3.4 Test case using mock objects

B Extends
MockObjectTestCase

C Creates
mock objects

D Configures
mock objects

86 CHAPTER 3

Using the Domain Model pattern
 PlaceOrderServiceResult result =
 service.updateDeliveryInfo(
 pendingOrderId,
 goodDeliveryAddress,
 goodDeliveryTime);

 assertTrue(result.isSuccess());

 PendingOrder returnedPendingOrder =
 result.getPendingOrder();
 assertSame(pendingOrder,
 returnedPendingOrder);
 }

}

Let’s look at what this test does:

The test case class extends the jMock MockObjectTestCase class, which automati-
cally verifies that the mock object’s expectations are met.

The setup() method creates the mock PendingOrderRepository, the mock Pend-
ingOrder, and PlaceOrderService.

The test defines the expectations for the mocks and their return values. The mock
PendingOrderRepository expects to have findOrCreatePendingOrder() called with
the delivery information and returns the mock PendingOrder. The mock Pending-
Order expects to have updateDeliveryInfo() called with the delivery information.
It returns true to indicate that the delivery information was valid and that Pending-
Order was updated.

After configuring the expectations, the test calls PlaceOrderService.update-
DeliveryInfo().

The test then asserts that the call succeeds and verifies that PlaceOrderService
returned the mock PendingOrder. It no longer verifies that PendingOrder contains
the correct delivery information because it assumes that PendingOrder.update-
DeliveryInfo() behaves correctly.

As you can see, this method and its tests are relatively simple because like most
service methods it simply invokes other domain model objects. By using mocks for
those objects, we can develop and test PlaceOrderService without having to get
into their implementation details.

E Invokes the
service

F Verifies
the result

B

C

D

E

F

Implementing a domain model: an example 87
3.3.2 Implementing a domain entity method

We have implemented our first method, and it’s tested and working! But we still
have more to do. While implementing PlaceOrderService.updateDelivery-
Info(), we determined that it delegates to PendingOrder, which is a domain model
entity, and calls its updateDeliveryInfo() method. This method validates the
delivery information and updates PendingOrder. It returns a boolean value that
indicates whether the delivery information was valid. Let’s look at how to imple-
ment this method.

Writing a test
As before, we start off by writing a test. Listing 3.5 shows a simple test for this
method that calls it with valid delivery information. It uses RestaurantTestData,
which isn’t shown, to create some test data.

public class PendingOrderTests extends TestCase {

 private Date goodDeliveryTime;
 private Address goodDeliveryAddress;
 private PendingOrder pendingOrder;

 protected void setUp() throws Exception {
 super.setUp();
 pendingOrder = new PendingOrder();

goodDeliveryAddress =
 RestaurantTestData.ADDRESS1;
 goodDeliveryTime =
 RestaurantTestData.
bbbbb➥ makeGoodDeliveryTime();
 }

 public void testUpdateDeliveryInfo_good() throws Exception {
 boolean result =
 pendingOrder.updateDeliveryInfo(
 goodDeliveryAddress,
 goodDeliveryTime);

 assertTrue(result);
 assertSame(goodDeliveryAddress,
 pendingOrder.getDeliveryAddress());
 assertSame(goodDeliveryTime,
 pendingOrder.getDeliveryTime());
b}

}

Listing 3.5 PendingOrderTests

B Creates the
PendingOrder

C Calls
updateDeliveryInfo()

D Verifies
the outcome

88 CHAPTER 3

Using the Domain Model pattern
The test case calls PendingOrder.updateDeliveryInfo() with valid delivery infor-
mation and verifies that it updates PendingOrder and returns true.

Implementing the method
Because PendingOrder already defines a stub method, this test compiles without a
problem. But in order for it to pass, we need to replace the stub with a real imple-
mentation that validates the delivery information and updates PendingOrder.

 PendingOrder first checks that the delivery information is at least one hour in
the future by using the Java Calendar class. It then queries the database to validate
the delivery information. The simplest approach is to encapsulate this query within Res-
taurantRepository and define an isRestaurantAvailable() method. The update-
DeliveryInfo() method calls isRestaurantAvailable() and stores the delivery
information if it returns true:

public class PendingOrder {

 private Date deliveryTime;
 private Address deliveryAddress;

 public boolean updateDeliveryInfo(
 Address deliveryAddress,
 Date deliveryTime) {

 Calendar earliestDeliveryTime = Calendar.getInstance();
 earliestDeliveryTime.add(Calendar.HOUR, 1);
 if (deliveryTime.before(earliestDeliveryTime.getTime()))

 bbreturn false;
b
bbbbbbb//How to access this?
bbbbbbbRestaurantRepository restaurantRepository = …;

 if (restaurantRepository
 .isRestaurantAvailable(deliveryAddress, deliveryTime)) {
 this.deliveryAddress = deliveryAddress;
 this.deliveryTime = deliveryTime;
 return true;
 } else
 return false;
 }
}

One important design issue, which we haven’t resolved, is how PendingOrder
accesses RestaurantRepository. Let’s look at how to do this.

Options for accessing a repository
Repositories are mainly used by the domain services, but they are also invoked by
some entities such as PendingOrder. To invoke a method on a repository object,

Implementing a domain model: an example 89
the caller must obviously have a reference to the object. Earlier you saw how the
repositories were passed as constructor parameters to PlaceOrderService. How-
ever, for the reasons that I describe next, it is not always possible to do this with
domain model entities. Let’s explore the problem and the various solutions.

 The most convenient approach is to pass the repositories to entities as con-
structor parameters in this same way that they are passed to services. This enables
the entities to be initialized using the lightweight container’s constructor injec-
tion mechanism. Passing repositories as constructor parameters is a lot simpler
than passing repositories around as method parameters and does not have the
drawbacks of using singletons, as I describe a bit later. However, using this
approach to initialize entities is not straightforward because unlike services, which
are typically instantiated by the lightweight container, entities are created by the
persistence framework when it loads them from the database.

 By default, a persistence framework creates objects directly using the class’s
default constructor, and it’s not possible to pass in any required objects. Some
(but not all) persistence frameworks have a configurable object instantiation
mechanism that allows an application to control how objects are instantiated. The
application can configure the persistence framework to create objects using a
lightweight container that injects the dependencies. For an example of using con-
structor injection with Hibernate, see http://hibernate.org/182.html [Hibernate
injection]. However, because this approach is not universally available I am not
going to use it in this book.

 Another option is to implement repositories using static methods and vari-
ables. You could, for example, implement a repository as a singleton or a Thread-
Local. This approach works with any persistence framework and does not require
the repositories to be passed around, which can sometimes make the code too
complicated. The problem with static methods and variables is that they make
code harder to test. For example, they prevent you from using an alternative
implementation such as a mock object because you cannot redirect a static
method call or variable access to a different class. They also introduce hidden
dependencies because the code depends on static variables that must be initial-
ized. Consequently, static methods and variables are best avoided.

 Given that only some persistence frameworks allow you to use constructor
injection to initialize entities and that using static methods and variables has some
serious drawbacks, it often makes sense to pass repositories as method parame-
ters. It avoids the problems of using singletons and does not rely on proprietary
persistence framework features. The one drawback of adopting this approach,
however, is that it can have a ripple effect through the code. We might have to

90 CHAPTER 3

Using the Domain Model pattern
change many methods to take repositories as parameters in order to pass them
from the services, which obtain them via constructor injection, to the methods
that use them.

 In this example, passing RestaurantRepository to PendingOrder requires only
minor changes. We just need to change PlaceOrderService (in listing 3.3) to pass
RestaurantRepository as an argument to PendingOrder.updateDeliveryInfo(),
which in turn requires PlaceOrderService’s constructor to take it as a parameter.
Listing 3.6 shows the PendingOrder.updateDeliveryInfo() method.

public class PendingOrder {

 private Date deliveryTime;
 private Address deliveryAddress;

 public boolean updateDeliveryInfo(
 RestaurantRepository restaurantRepository,
 Address deliveryAddress,
 Date deliveryTime) {

 Calendar earliestDeliveryTime = Calendar.getInstance();
 earliestDeliveryTime.add(Calendar.HOUR, 1);
 if (deliveryTime.before(earliestDeliveryTime.getTime()))

bbbbbbbbbreturn false;

 if (restaurantRepository
 .isRestaurantAvailable(deliveryAddress, deliveryTime)) {
 this.deliveryAddress = deliveryAddress;
 this.deliveryTime = deliveryTime;
 return true;
 } else
 return false;
 }

}

This method calls the RestaurantRepository.isRestaurantAvailable() method
and, if it succeeds, updates PendingOrder with the delivery information.

 In order to get this class to compile, we need to define the isRestaurantAvail-
able() method:

public interface RestaurantRepository {
 boolean isRestaurantAvailable(Address deliveryAddress,
 Date deliveryTime)
…
}

Listing 3.6 PendingOrder

Implementing a domain model: an example 91
This method returns true if there is at least one restaurant that serves the speci-
fied delivery information. We also have to change PlaceOrderService to take Res-
taurantRespository as a constructor parameter and pass it to PendingOrder and
change its tests to use a mock RestaurantRepository.

Revising the test
After writing PendingOrder’s method, we only have one thing left to do. We must go
back to its test and change it to create and configure the required mock objects.
This test, which is shown in listing 3.7, creates and configures a mock Restaurant-
Repository and passes it as an argument to the call to updateDeliveryInfo().

public class PendingOrderTests extends MockObjectTestCase {

 private Date goodDeliveryTime;
 private Address goodDeliveryAddress;
 private RestaurantRepository restaurantRepository;
 private Mock mockRestaurantRepository;
 private PendingOrder pendingOrder;

 protected void setUp() throws Exception {
 super.setUp();
 pendingOrder = new PendingOrder();

 goodDeliveryAddress = RestaurantTestData.ADDRESS1;
 goodDeliveryTime =
 RestaurantTestData.
bbbbbb➥ makeGoodDeliveryTime();

 mockRestaurantRepository =
 new Mock(RestaurantRepository.class);
 restaurantRepository =
 (RestaurantRepository) mockRestaurantRepository.proxy();
 }

 public void testUpdateDeliveryInfo_good() throws Exception {

 mockRestaurantRepository
 .expects(once())
 .method("isRestaurantAvailable")
 .with(eq(goodDeliveryAddress),
 eq(goodDeliveryTime))
 .will(returnValue(true));

 boolean result =
 pendingOrder.updateDeliveryInfo(
 restaurantRepository,

Listing 3.7 Tests for the updateDeliveryInfo() method

Creates
PendingOrder
and test data

Creates mock
Restaurant

Configures
expectations

Calls
updateDeliveryInfo()

92 CHAPTER 3

Using the Domain Model pattern
 goodDeliveryAddress,
 goodDeliveryTime));

 assertTrue(result);
 assertSame(
 goodDeliveryAddress,
 pendingOrder.getDeliveryAddress());
 assertSame(
 goodDeliveryTime,
 pendingOrder.getDeliveryTime());

 }

}

The test case configures the mock RestaurantRepository to expect its isRestau-
rantAvailable() method to be called and return true. It verifies that Pending-
Order.updateDeliveryInfo() stores the delivery information stored in Pending-
Order and returns true.

3.3.3 Summary of the design

So far we have only scratched the surface of the design, but by taking the enter pay-
ment information request, writing a couple of tests, and implementing some meth-
ods, we have already started to flesh out the domain model for the Place Order
use case.

 As figure 3.4 shows, we have partially implemented and tested several classes
and methods. We have written the PlaceOrderService.updateDeliveryInfo() and
PendingOrder.updateDeliveryInfo() methods. We have also identified some
repository methods: PendingOrderRepository.findOrCreatePendingOrder(), Res-
taurantRepository.isRestaurantAvailable(), and RestaurantRepository.find-
AvailableRestaurants().

 Of course, there is a lot more work to do. For example, we need to write some
more tests for PlaceOrderService.updateDeliveryInfo() and PendingOrder.up-
dateDeliveryInfo(), including ones that call those methods with invalid delivery
information. There are also all the other requests to implement. After each mini-
cycle of test writing and implementation, we move closer and closer to the domain
model shown at the beginning of this chapter. To see the complete domain model,
visit the book’s website.

Calls
updateDeliveryInfo()

Verifies
the outcome

Summary 93
3.4 Summary

The Domain Model pattern organizes the business logic as a domain model,
which is an object model of the application’s problem domain. The domain
model classes are invoked by either directly by the presentation tier or indirectly
via a POJO façade or a session façade. Each request handled by the presentation
tier typically results in one or more calls to domain model objects. The domain
objects validate user input, perform calculations, and access the database.

 This pattern has all the benefits of the OO paradigm. For example, the busi-
ness logic is easier to maintain because responsibilities are distributed among the
classes of the object model rather than being concentrated in a few large classes.
It is also easier to extend because the domain model can use Gang of Four pat-
terns, such as the Strategy and Template Method patterns. The Domain Model
pattern is typically the best way to design complex business logic.

updateDeliveryInfo(pendingOrderId, Address, Date)

PlaceOrderServiceImpl

findOrCreatePendingOrder (pendingOrderId)

<< interface>>
PendingOrderRepository

updateDeliveryInfo(RestaurantRepository, Address, Date)

PendingOrder

isRestaurantAvailable(Address, Date)
findAvailableRestaurants(Address, Date)

<<interface>>
RestaurantRepository

updateDeliveryInfo(pendingOrderId, Address, Date)

<<interface>>
PlaceOrderService

testUpdateDeliveryInfo_good()
...

PlaceOrder
ServiceTests

testUpdateDeliveryInfo_good()
...

PendingOrderTests

Figure 3.4 The domain model types and methods that we have developed so far

94 CHAPTER 3

Using the Domain Model pattern
 An effective way to develop a domain model is to first analyze the use cases and
talk to the customer to create the initial domain model, which consists primarily of
the classes and their attributes and associations. Then analyze the requirements to
identify the methods that the domain model must expose to its client. After that,
implement those methods using a test-driven development process.

 To avoid dealing with persistence issues, it is usually a good idea to use mock
objects to simulate the database access code. This enables you to focus on getting
the business logic right. It also speeds up the tests for the domain model classes by
eliminating the overhead of the database. At some point, of course, you have to
map the persistent objects to the database and implement the database access
code. The next chapter shows you how to do this.

Overview of persisting
a domain model
This chapter covers
■ Mapping a domain model to the database
■ Accessing the database with an

ORM framework
■ Using Spring’s ORM support classes
■ Testing a persistence layer
95

96 CHAPTER 4

Overview of persisting a domain model
When my son was younger, he liked to play with a toy that involved matching
shapes with the corresponding holes. At first, he struggled to put the right shape
in the right hole. It took him a while to realize that it’s impossible put a round peg
into a square hole. But eventually, he developed good shape recognition and
matching skills and was able to master the game.

 When developing enterprise Java applications, we have to do the equivalent of
putting a round peg into a square hole. Because object databases never became a
mainstream technology, we must store objects in a relational database. When pro-
cessing a request, an application has to move domain objects between the JVM
and the database. It must load an object from the database before invoking any of
its methods or accessing any of its fields, and it must save the object back to the
database if it has been modified. Persisting objects is a remarkably challenging
problem because of the significant differences between a domain model and a
database schema—the so-called impedance mismatch.

 Persisting a domain model is made even more difficult by the need to do it
without the classes knowing that they are persistent. The term for this is transpar-
ent persistence, and it’s important because it simplifies development considerably. It
enables classes to be POJOs and decouples them from the database. In contrast,
EJB 2.0 entity beans are an example of nontransparent persistence and you know
about their problems. However, as you will learn in this chapter, implementing
transparent persistence is difficult because objects and databases are accessed in
very different ways.

 In this chapter you will learn why using an ORM framework is much better
than trying to solve these problems yourself. I explain how to map the classes and
relationships of an object model to a database schema. I describe the key features
of ORM frameworks and provide an overview of JDO and Hibernate, which are two
popular options. You will learn how to effectively test a persistent domain model
and see some repository design techniques that make testing easier.

4.1 Mapping an object model to a database

If you have developed a domain model such as the one shown in figure 4.1, then
you must map its classes and their fields to tables and columns in the database.

 But how do you map a network of interconnected objects to a database
schema, which has a flat structure consisting of tables and columns? Important
OO concepts such as inheritance have no corresponding database equivalent.
The rich set of relationships between objects doesn’t map easily into the foreign
key relationships between tables. Object identity and lifecycle also don’t translate

Mapping an object model to a database 97
in a straightforward way into the database concepts. As a result, deciding how
each object, field, and relationship in the domain model is stored in the database
is a difficult problem. In this section, you will learn how.

4.1.1 Mapping classes

The central concept in a domain model is, of course, the class, which describes
the structure and behavior of its instances or objects. There are three main ways
to map a class to a database schema:

■ Map a class to its own table.

■ Map a class to some other class’s table.

■ Map a class to multiple tables.

Let’s look at each one.

Date deliveryTime

PendingOrder

name
serviceArea: Set<String>

Restaurant

PendingOrder-
Restaurant

street1
street2
city
state
zip

Address

Payment
Information

PendingOrder-Address PendingOrder-
PaymentInformation

quantity

PendingOrder
LineItem name

description
price

MenuItem

PendingOrder-
PendingOrderLineItem

0..1

0..1

*

1

0..1

Restaurant-MenuItem

code
validFrom
validTo

<<interface >>
Coupon

PendingOrder
-Coupon

0..1

dayofWeek
openingTime
closingTime

TimeRange

Restaurant-TimeRange

*

code
minimum

FreeShipping
Coupon

code
minimum
percentage

Percentage
DiscountCoupon

PendingOrderLineItem-
MenuItem

Figure 4.1 Part of the domain model for the Food to Go application

98 CHAPTER 4

Overview of persisting a domain model
Map a class to its own table
The simplest approach is to define a table for the class and map the class’s simple
fields (e.g., those of type int, String, and Date) to table columns. For example,
the PendingOrder class from the Food to Go application has fields such as state
and deliveryTime:

public class PendingOrder {
 private int state;
 private Date deliveryTime;
…
}

This class and its simple fields can be mapped to the PENDING_ORDER table:

CREATE TABLE PENDING_ORDER (
 PENDING_ORDER_ID NUMBER(10),
 STATE NUMBER(5)
 DELIVERY_TIME DATE,
…
)

The PendingOrder class is mapped to the PENDING_ORDER table, whose primary
key is PENDING_ORDER_ID. The class’s simple fields are mapped to columns of this
table. For example, the deliveryTime field maps to the DELIVERY_TIME column.

Map a class to its parent’s table
Another way to map a class to a database schema is to map it to some other class’s
table. This approach, also called the Embedded Value pattern [Fowler 2002], is
often used to persist a simple value object that is a child of a parent object. The
fields of the child are mapped to the columns of the parent object’s table. For
example, the PendingOrder class has a deliveryAddress field, which is a reference
to an Address object:

public class PendingOrder {
 private Address deliveryAddress;
…
}

public class Address {
 private String street1;
 private String street2;
 private String city;
 private String state;
 private String zip;
…
}

Mapping an object model to a database 99
The Address class could be mapped to its own table, as I describe a bit later, but it
is simpler and more efficient to map its fields to PENDING_ORDER:

CREATE TABLE PENDING_ORDER (
 PENDING_ORDER_ID NUMBER(10),
 STATE NUMBER(5)
 DELIVERY_TIME DATE,
 DELIVERY_STREET1 VARCHAR2(50),
 DELIVERY_STREET2 VARCHAR2(50),
 DELIVERY_CITY VARCHAR2(50),
 DELIVERY_STATE VARCHAR2(2),
 DELIVERY_ZIP VARCHAR2(10),
…
)

The PENDING_ORDER table has columns such as DELIVERY_STREET1 and
DELIVERY_CITY that store the delivery address fields.

 This approach simplifies the database schema by reducing the number of
tables. It also improves performance by reducing the number of joins required to
retrieve data. For example, the application can retrieve a PendingOrder and its
delivery address by only querying the PENDING_ORDER table.

Map a class to multiple tables
We will usually map a class to either its own table or to its parent’s table. But some-
times, you need to map a class to multiple tables. This is useful when you’re map-
ping an object model to a legacy schema. It can also be used to improve
performance when a class has a large number of attributes. Instead of mapping the
class to a single table with a large number of columns, the less frequently used
attributes can be mapped to a separate table, which is queried only when necessary.

 Now that we have explored how to map classes and their simple fields to the
database, let’s look at mapping relationships.

4.1.2 Mapping object relationships

We have seen that simple fields are easily mapped to table columns. However,
mapping the other fields that represent relationships between objects is a little
more complicated. There are several kinds of relationships between objects,
including one-to-one, many-to-one, one-to-many, and many-to-many. Let’s see how
to map each one.

Mapping one-to-one and many-to-one relationships
One-to-one and many-to-one relationships are implemented by fields that refer-
ence the other object. For example, the PendingOrder-Address relationship from

100 CHAPTER 4

Overview of persisting a domain model
figure 4.1, which is a one-to-one relationship, is implemented by the delivery-
Address field, which references an Address object and the PendingOrder-
Restaurant relationship, which is a many-to-one relationship, is implemented by a
restaurant field, which references a Restaurant:

public class PendingOrder {
 private Address deliveryAddress
 private Restaurant restaurant;
…

The PendingOrder.restaurant field represents a many-to-one relationship
because multiple pending orders can be for the same restaurant. The Pending-
Order.deliveryAddress field represents either a one-to-one relationship where
each address belongs to a single PendingOrder or a many-to-one relationship
where each Address is shared by many PendingOrders.

 There are a couple of ways of mapping a one-to-one relationship. One option
is to use the Embedded Value pattern described earlier and map the child object
to the parent object’s table. The other option is for the referenced class to have its
own table. For example, the delivery address for a PendingOrder can be stored in
its own table as follows:

CREATE TABLE PENDING_ORDER (
 PENDING_ORDER_ID NUMBER(10),
 DELIVERY_TIME DATE
 …
)

CREATE TABLE DELIVERY_ADDRESS
 PENDING_ORDER_ID NUMBER(10),
 DELIVERY_STREET1 VARCHAR2(50),
 DELIVERY_STREET2 VARCHAR2(50),
 DELIVERY_CITY VARCHAR2(50),
 DELIVERY_STATE VARCHAR2(2),
 DELIVERY_ZIP VARCHAR2(10),
…

The delivery address is stored in the DELIVERY_ADDRESS table, whose primary key
is PENDING_ORDER_ID.

 A many-to-one relationship is mapped by the referencing object’s table having
a foreign key to the referenced object’s table. For example, the PendingOrder-
Restaurant relationship from figure 4.1 can be mapped by the PENDING_ORDER
table having a foreign key to the RESTAURANT table:

CREATE TABLE PENDING_ORDER (
 …
 RESTAURANT_ID NUMBER(1),

Mapping an object model to a database 101
 CONSTRAINT P_ORDER_RESTAURANT_FK
 FOREIGN KEY(RESTAURANT_ID)
 REFERENCES RESTAURANT(RESTAURANT_ID),
 …
)

CREATE TABLE RESTAURANT (
 RESTAURANT_ID NUMBER PRIMARY KEY,
 …
)

In this example, the Restaurant class is mapped to the RESTAURANT table, whose
primary key is RESTAURANT_ID. The restaurant field of the PendingOrder class is
mapped to the RESTAURANT_ID column of the PENDING_ORDER table. It is a for-
eign key to the RESTAURANT table.

Mapping one-to-many relationships
Java classes don’t just have fields that store simple values and references to other
objects. They also have collection fields such as lists, maps, sets, and fields that
store arrays. These collection and array fields implement one-to-many and many-
to-many relationships. A relationship called A-B is one-to-many when each B
object is only referenced by a single A object. The Food to Go domain model con-
tains several examples of one-to-many relationships. For instance, the Pending-
Order.lineItems field implements the PendingOrder-PendingOrderLineItem
relationship in figure 4.1, which is a one-to-many relationship:

public class PendingOrder {
 private List lineItems; /* List<PendingOrderLineItem> */
…
}

A one-to-many relationship is usually mapped using a foreign key in the refer-
enced class’s table. We can, for instance, map the PendingOrder lineItems field
using a foreign key in the PENDING_ORDER_LINE_ITEM table:

CREATE TABLE PENDING_ORDER_LINE_ITEM (
 …
 PENDING_ORDER_ID NUMBER(10)
 LINE_ITEM_INDEX NUMBER(10) NOT NULL,
 CONSTRAINT P_ORD_LINE_ITEM_ORDER_FK
 FOREIGN KEY(PENDING_ORDER_ID)
 REFERENCES PENDING_ORDER(PENDING_ORDER_ID)

The PENDING_ORDER_LINE_ITEM table has a PENDING_ORDER_ID column, which is
a foreign key to the PENDING_ORDER table. In addition, because lists are ordered,

102 CHAPTER 4

Overview of persisting a domain model
the PENDING_ORDER_LINE_ITEM table has a LINE_ITEM_INDEX column, which
stores the position of the line item in the list.

 One-to-many relationships are often whole-part relationships, which are rela-
tionships where the part cannot exist independently of the whole. A part must be
deleted if either the whole is deleted or the part is no longer associated with the
whole. Examples of whole-part relationships in the Food to Go domain model are
PendingOrder-PendingOrderLineItem and Restaurant-MenuItem. A line item or
menu item cannot exist independently of its PendingOrder or Restaurant. As I
describe later, it is extremely useful if an ORM framework directly supports whole-
part relationships.

Mapping many-to-many relationships
A relationship called A-B is many-to-many when a B object can be referenced by
multiple A objects. For example, if a customer could use multiple coupons when
placing an order, then PendingOrder-Coupon relationship would be many-to-many
instead many-to-one. A PendingOrder could have multiple coupons and a coupon
could be used by multiple PendingOrders:

public class PendingOrder {
 private List coupons;
…
}

public class Coupon {
…
}

A many-to-many relationship is mapped using a join table that has foreign keys to
both classes’ tables. The PendingOrder-Coupon relationship can be mapped as follows:

CREATE TABLE PENDING_ORDER (
 PENDING_ORDER_ID,
…
)

CREATE TABLE COUPON (
 COUPON_ID
…
)

CREATE TABLE PENDING_ORDER_COUPON (
 PENDING_ORDER_ID
 COUPON_ID
)

Mapping an object model to a database 103
The PendingOrder-Coupon relationship is represented by the PENDING_ORDER
_COUPON table. This table has foreign keys to both the PENDING_ORDER table
and the COUPON table, which stores the coupons. A one-to-many relationship can
also be mapped using a join table, although this approach is used less often
because the foreign key mapping we just described is simpler and faster.

4.1.3 Mapping inheritance

Inheritance is another kind of relationship between classes. This fundamental
object-oriented concept is widely used in domain models. For example, the Food
to Go domain model has the Coupon hierarchy shown in figure 4.2.

 In this example, a PendingOrder and an Order can have a Coupon, which is an
interface that encapsulates how to calculate a discount on an order that satisfies
some minimum value. Each concrete implementation of the Coupon interface
implements a different algorithm. The FreeShippingCoupon class provides free
shipping on orders, and the PercentageDiscountCoupon class provides a percent-
age discount. Because relational databases do not directly support inheritance, an
application must map an inheritance hierarchy to one or more tables.

 Three main ways exist to map an inheritance hierarchy to a relational schema:

■ Single table per inheritance hierarchy

■ Table per class

■ Table per concrete class

Let’s look at each one of these in turn.

<<interface >>
Coupon

code
minimum

FreeShipping
Coupon

code
minimum
percentage

Percentage
DiscountCoupon

PendingOrder Order

Figure 4.2 The Coupon inheritance hierarchy from the Food to Go
domain model

104 CHAPTER 4

Overview of persisting a domain model
Table per hierarchy
One ORM approach is to map all of the classes in an inheritance hierarchy to a
single table. For example, we can map the Coupon hierarchy to the COUPON table
as follows:

CREATE TABLE COUPON (
 CODE VARCHAR2(30),
 COUPON_TYPE VARCHAR2(100),
 MINIMUM NUMBER(10,2),
 PERCENT_DISCOUNT NUMBER(5,2),
…
);

The COUPON table has columns that store the fields of all three classes:

■ CODE: Stores the coupon code from the FreeShippingCoupon and Percentage-
DiscountCoupon classes

■ MINIMUM: Stores the minimum quantity from the FreeShippingCoupon and
PercentageDiscountCoupon classes

■ PERCENT_DISCOUNT: Stores the percentage discount from PercentageDis-
countCoupon

It also has a COUPON_TYPE column, which is a discriminator column that stores the
type of each coupon.

 This approach has the following benefits:

■ It uses the minimum number of SQL statements and joins to access and
manipulate objects because they are stored in a single table. Finding objects
requires a SELECT statement that references a single table, and updating and
creating objects requires a single INSERT or SELECT statement.

■ A reference to a superclass is simply mapped as a foreign key to a single
table. For example, the PendingOrder-Coupon relationship is mapped to a
foreign key from the PENDING_ORDER to the COUPON table.

This approach has the following drawbacks:

■ A row can have unused columns because only those columns that corre-
spond to one subclass’s fields are used. This can potentially result in ineffi-
cient storage utilization and unnecessary traffic between the application
and the database. It can prevent you from defining the correct database
schema constraints. For example, the DISCOUNT_PERCENTAGE column is only
used in those rows that represent instances of PercentageDiscountCoupon,
and so we cannot define the DISCOUNT_PERCENTAGE column as NOT NULL.

Mapping an object model to a database 105
■ Each time we define a new subclass that requires new columns, we must
modify this table.

Table per class
If you want to avoid those problems, you can instead map each class to its own
table. In this example we use three coupon tables, one for each class:

CREATE TABLE COUPON (
 COUPON_ID NUMBER(10) NOT NULL,
 CODE VARCHAR2(30) NOT NULL,
 COUPON_TYPE VARCHAR2(100) NOT NULL,
 MINIMUM NUMBER(10,2) NOT NULL,
);

CREATE TABLE PERCENT_DISCOUNT_COUPON (
 COUPON_ID NUMBER(10) NOT NULL,
 DISCOUNT_PERCENTAGE NUMBER(5,2),
 CONSTRAINT COUPON_PK
 PRIMARY KEY(COUPON_ID),
 CONSTRAINT PERCENT_DISCOUNT_COUPON_FK
 FOREIGN KEY(COUPON_ID)
 REFERENCES COUPON(COUPON_ID)
);

CREATE TABLE FREE_SHIPPING_COUPON (
 COUPON_ID NUMBER(10) NOT NULL,
 CONSTRAINT COUPON_PK
 PRIMARY KEY(COUPON_ID)
 CONSTRAINT FREE_SHIPPING_COUPON_FK
 FOREIGN KEY(COUPON_ID)
 REFERENCES COUPON(COUPON_ID)
);

The COUPON table contains a row for each coupon. The PERCENT_DISCOUNT
table contains the percentage discount coupons and its primary key column,
COUPON_ID, is a foreign key to the COUPON table. Similarly, the FREE_SHIP-
PING_COUPON table contains the free shipping coupons and its primary key is
also a foreign key to the COUPON table.

 This approach has the following benefits:

■ It does not result in unused columns, which minimizes space utilization and
enables columns, such as DISCOUNT_PERCENTAGE, to have the appropriate NOT
NULL definition.

■ References to a superclass are simply mapped to a foreign key reference to
a single table.

■ It enables new subclasses to be added without having to modify existing tables.

106 CHAPTER 4

Overview of persisting a domain model
The main drawback of this approach is that it requires multiple SQL statements to
update and delete entities. It also requires SQL statements to use multiway joins.
For example, when the application creates a FreeShippingCoupon, it must insert a
row into the COUPON and FREE_SHIPPING_COUPON tables; when it loads a Cou-
pon, it must either use a SQL SELECT statement that does a join with all three tables
or execute multiple SELECT statements.

Table per concrete class
The third and final option is to define a table for each concrete class, that is, each
class that is not an abstract class or an interface. In the Coupon hierarchy example,
we define the tables for the PercentageDiscountCoupon and FreeShippingCoupon
classes:

CREATE TABLE PERCENT_DISCOUNT_COUPON (
 COUPON_ID NUMBER(10) NOT NULL,
 CODE VARCHAR2(30) NOT NULL,
 MINIMUM NUMBER(10,2) NOT NULL,
 DISCOUNT_PERCENTAGE NUMBER(5,2),
 CONSTRAINT COUPON_PK
 PRIMARY KEY(COUPON_ID),
)

CREATE TABLE FREE_SHIPPING_COUPON (
 COUPON_ID NUMBER(10) NOT NULL,
 CODE VARCHAR2(30) NOT NULL,
 MINIMUM NUMBER(10,2) NOT NULL,
 CONSTRAINT COUPON_PK
 PRIMARY KEY(COUPON_ID)
)

Each table has columns corresponding to fields for the class and its superclasses.
 This approach has the following benefits:

■ Creating or saving instances only requires a single INSERT or UPDATE state-
ment.

■ There are no unused columns, and the application can define the correct
constraints.

There are, however, numerous drawbacks:

■ References to a superclass are difficult to map to the database schema. For
example, in order to represent the PendingOrder-Coupon relationship,
PENDING_ORDER would need foreign keys to the PERCENT_DISCOUNT
_COUPON and FREE_SHIPPING_COUPON tables.

Mapping an object model to a database 107
■ Querying for an abstract superclass can be inefficient because the application
must either execute a SQL SELECT statement for each table or use the SQL UNION
operator, which is only supported by some databases and can be inefficient.

■ Maintenance is more difficult since columns correspond to fields in super-
classes are duplicated in each table. If you add a field to a superclass, you
have to add a column to multiple tables.

My preference is to use the table-per-hierarchy approach whenever possible, and
it is the approach used by the examples in this book. However, you should use the
table-per-class approach if the table-per-hierarchy approach would result in too
many unused or null columns.

 Deciding how the domain model maps to the database schema is one part of
solving the impedance mismatch between the object-oriented and relational
worlds. You must also deal with object lifecycle and identity issues.

4.1.4 Managing object lifecycles

In addition to mapping a domain model to the database, you have to deal with the
impact of persistence on an object’s lifecycle. Let’s first look at the lifecycle of a
nonpersistent Java object. A Java object comes into existence when the application
calls new or invokes a constructor via reflection. After creating an object, the appli-
cation can then invoke its methods and access its fields. Because Java has a gar-
bage collector, an application does not explicitly destroy an object. Instead, the
application stops referencing the object, which is eventually destroyed by the gar-
bage collector.

 The creation and destruction of a persistent object needs to be handled differ-
ently because the database is involved. When a persistent object is created, the
application must execute a SQL INSERT statement to insert a row. Similarly, in
order to delete a persistent object the application must execute a SQL DELETE
statement to remove the row from the database. As I describe in a moment, an
ORM framework will often persist and delete persistent objects automatically.
Sometimes, however, an application must persist and delete an object by calling
an ORM framework API.

4.1.5 Persistent object identity

Persistence does not just affect an object’s lifecycle. Another issue to consider
when mapping a domain model to a database schema is dealing with the identity
of persistent objects. A persistent object has both Java identity and database iden-
tity, which are two very different concepts. Java defines the == operator, which

108 CHAPTER 4

Overview of persisting a domain model
returns true if the two operands reference the same object. In the database, the
identity of a row is its primary key, which is a column or set of columns that
uniquely identifies a row in table. Two objects in a relational database are the
same if they map to the same row in the same table.

 The differences between Java identity and database identity impact the appli-
cation in a number of ways. Usually, an application must assign a primary key to a
persistent object. The primary key can sometimes be a natural key, which is a
value that has a business meaning, such as a social security number. However,
because even a social security number can change, it is almost always better to use
a surrogate key, which is a unique value generated by the application or database.
The application typically stores the primary key in the object for easy access. This,
of course, requires each persistent class to define a field to store it.

 Also, when processing a request the application must ensure there is only a sin-
gle in-memory instance of a persistent object in order to guarantee that the data-
base identity matches the Java identity. Otherwise, if there were two copies of the
same persistent object in memory the application would behave incorrectly. Cor-
rectly managing the identity of persistent objects is tricky, and as you will see in
the next section, one of the main benefits of using an ORM framework is that it is
handled automatically.

4.2 Overview of ORM frameworks

Now that you seen the different ways of mapping a domain model to a database
schema, let’s tackle the problem of getting objects in and out of the database.
Each request handled by the application results in one or more calls to the busi-
ness tier, which accesses, instantiates, updates, and deletes domain objects.
Because these objects are persistent, the application must execute SELECT state-
ments to load them from the database and execute INSERT, UPDATE, and DELETE
statements to update the database to reflect the changes made to them.

 If the domain model is extremely simple and used in a very straightforward
way, you might be able to persist it yourself using JDBC or iBATIS. For example,
writing the code to load and save an individual domain object using either of
these technologies is not difficult. But imagine how much database access code
you would have to write to persist a large domain model. It could be overwhelm-
ing. It would be like trying to demolish an iceberg with an ice pick. In addition,
the database access code has to solve some challenging problems. Let’s examine
those challenges and see why you don’t want to solve them yourself.

Overview of ORM frameworks 109
4.2.1 Why you don’t want to persist objects yourself

There are three main challenges when trying to persist objects. One is enabling
the application to navigate relationships between domain objects while minimiz-
ing the number of objects loaded from the database. When an object is loaded,
the database access code does not know which related objects will be later
accessed by the application. Loading all of the objects that might be accessed is
extremely inefficient because an object graph (which is the set of objects that are
accessible from the root object) can be quite large. The database access code must
instead implement a mechanism called lazy loading that loads objects on
demand, when they are first accessed.

 The second major challenge is writing back to the database only those objects
that have been modified. An application might load a large number of objects and
yet only modify a few of them. It would be extremely inefficient to save all objects
regardless of whether they have changed. It would also be unreasonable and error-
prone for the application to remember the modified objects. The database access
code must keep track of which objects need to written back to the database.

 Also, as I mentioned earlier, the database access code must preserve object
identity by ensuring that there is a single in-memory instance of a persistent
object when processing a request. It must keep track of every object that is loaded
by maintain a map between primary keys and objects—the so-called Identity Map
pattern [Fowler 2002]. The database access code must look in the map before
loading an object from the database. This is certainly not difficult to do, but it
adds additional complexity to the database access code.

 As you can envisage, database access code that implements features such as lazy
loading and change tracking can become extremely complex. Most applications
must use an ORM framework, which handles these and a myriad of other issues.

4.2.2 The key features of an ORM framework

An ORM framework solves the difficult problem of storing objects in a relational
database. You tell the framework how your domain model maps to the database
schema, and it takes care of getting your objects in and out of the database. This
enables you to focus on solving your business problems rather than writing lots of
low-level database access code.

 The key features of an ORM framework are as follows:

110 CHAPTER 4

Overview of persisting a domain model
■ Declarative mapping between the object model and database schema—Describes
how the object model’s classes, attributes and relationships are mapped to
database table and columns and used by the ORM framework to generate
SQL statements

■ An API for creating, reading, updating, and deleting objects—Called by the
domain model’s repositories to manipulate persistent data

■ A query language—Used to efficiently find persistent objects that satisfy
search criteria

■ Support for transactions—Maintains data integrity and handles concurrent
updates

■ Lazy and eager loading—Optimizes performance by controlling when objects
are loaded

■ Caching—Improves performance by minimizing database accesses

■ Detached objects—Enables persistent objects to be passed between the presen-
tation tier and the business tier

Before looking at these features in detail, let’s first see how an ORM framework fits
in with the rest of the application. Figure 4.3 shows that the framework is invoked
by the POJO façade and the repositories.

 The POJO façade calls the ORM framework to manage transactions and detach
and attach objects. The repositories call it to create, find, and delete persistent
objects such as PendingOrder and Restaurant. The framework accesses the data-
base using SQL statements generated from the declarative mapping information.
Let’s now look at each of main features of an ORM framework.

Declarative mapping between the object model and schema
An ORM framework lets you specify how your domain model maps to your data-
base schema using the mapping options described earlier in section 4.1. You typi-
cally define the mapping using XML, although some O/R frameworks also allow
you to use Java 5 annotations. The mapping document or annotations specify how
classes map to tables, how fields or JavaBean properties map to columns, and how
relationships map to foreign keys or join tables. The ORM framework uses this
mapping information to generate the SQL statements that load, save, update, and
delete persistent objects.

 The ORM framework provides transparent persistence. The persistent classes
are rarely aware that they are persistent. Quite often you only need to add a field
that stores the persistent identity. They do not have to implement any special

Overview of ORM frameworks 111
interfaces or call any ORM framework APIs. Later you will see that the repositories
are the only domain model classes that call the ORM framework API to create,
find, and delete persistent objects.

An API for creating, loading, and deleting objects
In addition to providing a declarative mapping mechanism, an ORM framework
provides an API for creating, loading, and deleting persistent objects. These APIs
are invoked by the domain model repositories, as shown in figure 4.3. A reposi-
tory instantiates a persistent object using new and calls an ORM framework API
method to save it in the database. It loads an object by calling an ORM framework
API method, with a class and object ID as arguments. If the object is not already
loaded, the framework queries the database and loads the object. The framework
will also lazily load an object when the application navigates to it. An application
deletes a persistent object by calling the ORM framework API, which deletes it
from the database.

Domain Model

PendingOrder
Repository

Object /Relational Mapping Framework

PendingOrder

Restaurant

POJO Façade

Restaurant
Repository

Database

Presentation
Tier

Figure 4.3
The relationship between the ORM
framework and the rest of the application

112 CHAPTER 4

Overview of persisting a domain model
 The application does not explicitly call an API method to save an updated
object. Instead, the ORM framework tracks which objects have been changed by
the application and automatically updates the database. Moreover, some ORM
frameworks automatically save or delete an object without the application calling
an API method. They automatically save a nonpersistent object in the database if it
is referenced by another persistent object. An application only needs to save top-
level “root” objects that are not referenced by any other persistent objects. Simi-
larly, some ORM frameworks can be configured to automatically delete a child
object when its parent is deleted or when it is no longer referenced by its parent.

Query language
In addition to loading objects individually, an application often needs to execute
queries that find all matching objects. To do this, it uses the ORM framework’s
query language. A query is expressed in terms of objects, their attributes, and rela-
tionships. The query language supports sorting and aggregate functions such as
sum(), min(), and max(). When called by a repository to execute a query, the ORM
framework translates the query into a SQL SELECT statement that retrieves the
objects. Some ORM frameworks also allow the application to retrieve objects using
a SQL query, which is useful when it needs to use database-specific SQL features.

Support for transactions
An application must usually update a database using transactions in order to pre-
serve data integrity. Transactions (which are described in more detail in chapter 12)
ensure, among other things, that if the application fails partway through updating
the database the already made changes will be undone. An ORM framework sup-
ports transactions in a couple of ways. It is integrated with the JTA, which enables
it to be used by applications that update multiple resources, such as a database and
JMS, at the same time. An ORM framework also has an API for managing transactions
directly. The API provides methods for beginning, committing, and rolling back a
transaction. An application can use this transaction management API instead of JTA
if it accesses a single database using the ORM framework.

Lazy and eager loading
As we will see in later chapters, the business tier typically handles a request by first
calling the ORM framework to explicitly load one or more “root” objects and then
navigating to other objects by traversing relationships starting from the root objects.
For instance, the example application loads a PendingOrder and then navigates to
its line item and its restaurant. An important way to improve performance is to opti-
mize the loading of objects by using the right balance of lazy and eager loading.

Overview of ORM frameworks 113
 Lazy loading occurs when the ORM framework loads objects on-demand, when
they are first accessed by the application. It is a key technique for improving per-
formance since it limits the amount of data that will be loaded. The opposite of
lazy loading is eager loading, which consists of loading multiple related objects
with a single SELECT statement instead of using multiple SELECT statements.

 One way the ORM framework could allow an application to traverse relation-
ships starting from a root object would be to load all accessible objects up front.
In the case of a pending order, the framework could also load the pending
order’s line items, its restaurant, and its menu items just in case the application
navigates to those objects. However, this can be inefficient because an application
typically only needs a few of what could be a large number of objects. To avoid
this overhead, the ORM framework loads objects lazily, when they are first
accessed by the application.

 To understand the importance of lazy loading, consider the following. I once
ported an application from EJB 2.0 entity beans, which use lazy loading, to Hiber-
nate 2.0, which uses eager loading by default. The performance of the application
dropped from N transactions per second to 1/N transactions per second because
of the excessive eager loading done by Hibernate. Once I configured all of the
classes to be lazily loaded, the throughput went back to N transactions per second.

 Even though lazy loading is essential, eagerly loading related objects that will
be navigated to can often improve performance. For example, if the application
needs a pending order, its line items, and its restaurant, then it can load all of
those objects with a single SELECT statement. Because those objects are accessed by
the application, this approach is a lot more efficient than lazily loading one object
at a time.

 The SQL statement that retrieves rows from multiple tables can use either an
inner (regular) join or an outer join. An outer join is useful because, unlike a reg-
ular join, it will return rows even if one or more of the tables contain no matching
rows. For example, a SQL statement that uses an outer join will still return the
rows from the PENDING_ORDER table even if a pending order has a null foreign
key to a restaurant or has no line items. In comparison, a regular join will not
return any rows.

 The challenge, however, with using eager loading is that different requests
often access different parts of the object graph. For example, one request might
use the pending order and its restaurant, and another might use the pending
order and its line items. It can be tricky to ensure that only the required objects
are eagerly loaded by each request. In chapters 5 and 6, I explain how you can
configure JDO and Hibernate to do this.

114 CHAPTER 4

Overview of persisting a domain model
Object caching
Earlier I described how an ORM framework must maintain a map of primary keys
and objects to ensure that only one copy of an object is loaded. The map acts also
as a cache and improves performance by eliminating database accesses. When
loading an object, the persistence framework can check the cache before access-
ing the database. By default, an ORM framework caches objects for either the
duration of a request or the duration of a transaction. It can also be configured to
cache objects for longer, which can sometimes improve performance consider-
ably. For example, the application can keep read-only objects in a process-level
cache and so rarely have to go to the database. An application can also cache data
that is updated, but this can be tricky if the application is running on a cluster or
the database is updated by another application.

Detached objects
One of the most tedious parts of developing a classic J2EE application is writing the
DTOs, which contain a copy of the data stored in the entity beans that implement
the domain objects and are returned to the presentation tier. Fortunately, we no
longer need to copy data into DTOs because one of the exciting features of modern
ORM frameworks is what are called detached objects.

 A detached object is one that is no longer persistent but that contains data from
the database and keeps track of its persistent identity. The business tier (usually
the POJO façade) can return a detached object to its client instead of creating a
DTO, which means that you need to write a lot less code.

 What’s more, detached objects make it easier to write edit-style use cases,
which are use cases that allow the user to edit data from the database. The presen-
tation tier can update one or more detached objects to reflect a user’s changes.
Then when the user saves the changes, the presentation tier passes the modified
detached objects back to the business tier. The business tier (usually the POJO
façade) reattaches them by calling the ORM framework, which updates the data-
base. See chapter 13 for an example of such a use case.

4.2.3 Benefits and drawbacks of using an ORM framework

Using an ORM framework has several benefits and drawbacks. Let’s look at each one.

Improved productivity
One important benefit of using an ORM framework is improved productivity. You
have significantly less code to write. The framework takes care of generating and
executing the SQL statements, which means you can focus on developing the

Overview of ORM frameworks 115
business logic. In addition, development, testing, and maintenance are easier
because the business logic is decoupled from the database.

Improved performance
Using an ORM framework also improves performance. The framework caches
objects, which reduces the number of database accesses. In addition, features such
as eager loading mean that the persistence framework can generate SQL state-
ments that are often much more efficient than those hand-written by developers.
Furthermore, unlike a developer, an ORM framework can do this consistently.

Improved portability
In addition to increasing productivity and performance, an ORM framework
increases portability across databases. The framework takes care of generating the
database-specific SQL statements, and migrating from one database to another is
usually as simple as setting a configuration parameter. In comparison, writing por-
table SQL by hand is extremely difficult.

Sometimes you must use SQL directly
Despite the benefits of an ORM framework, using SQL directly is sometimes the
only way to get good performance. You can use database-specific features such as
optimizer hints or Oracle’s CONNECT feature to improve the performance of que-
ries. In addition, SQL lets you insert, delete, or update a large number of rows
with a single SQL statement. For example, an INSERT statement such as the follow-
ing inserts the results of querying one table into another table:

INSERT INTO DESTINATION_TABLE
 SELECT …
 FROM SOURCE_TABLE
 WHERE …

In comparison, an ORM framework would typically have to perform the following
steps:

1 Execute a query, which returns a set of objects that are mapped to
SOURCE_TABLE.

2 Create objects that are mapped to DESTINATION_TABLE.

3 Save those objects.

This would be very inefficient if the query returned a large number of rows. As
well as transferring the data from the database to the application and back again,
there is also the overhead of manipulating the Java objects.

116 CHAPTER 4

Overview of persisting a domain model
 You might still have to use SQL even if there are no significant performance
benefits. Consider the policies laid down by your DBA. He might require you to
maintain your application’s SQL statements in separate files so that he can tune
them. Or, your DBA might require your application to access the database using
stored procedures. Consequently, you cannot let the ORM framework generate
SQL for you.

 Some ORM frameworks provide support for executing SQL statements directly.
Hibernate and JDO allow you to write native SQL queries. In addition, Hibernate
lets you specify the SQL statements to use for creating, updating, and deleting
individual objects. Hibernate and some JDO implementations provide some sup-
port for stored procedures. Hibernate also supports certain kinds of bulk updates
and deletes. But, even though these features are extremely useful, sometimes you
must execute SQL statements using either JDBC or iBATIS.

ORM limitations
ORM frameworks are not all-powerful. They have limitations that can prevent you
from mapping your domain model to a database schema in exactly the way you
want it to be done. This can be particularly challenging when you’re working with
a legacy schema. For example, a common performance optimization is to elimi-
nate joins by denormalizing the schema and storing the first N items of a one-to-
many relationship in the parent table. In this kind of situation, you typically have
to mirror the database structure in the domain model, which makes the code
more complicated.

 You might also design a domain model that cannot be mapped to the desired
database schema. If this happens, you must change either the domain model or
the database schema. For example, I once worked on an application that had a
class hierarchy of embedded objects that I wanted to map to the parent object’s
table. The ORM framework did not support this mapping, and so I had to map the
class hierarchy to its own table. In this instance, this limitation was only a minor
issue because I had control over the database schema. But if the database schema
had been fixed, I would have needed to change the domain model.

 Despite their limitations, ORM frameworks are an extremely useful technology
in many applications. They significantly increase productivity of developers by
reducing the amount of database access code that must be rewritten. Moreover,
they often increase the performance and portability of an application.

Overview of JDO and Hibernate 117
4.3 Overview of JDO and Hibernate

Now that we have looked at the key features of an ORM framework, let’s examine
Hibernate and JDO, which are two popular ORM frameworks that provide a rich
set of features. Hibernate is a widely used open source project. Hibernate 1.0 was
released in 2002, and as of this writing, Hibernate 3.1 is in beta. JDO is a standard
(JSR-012 and JSR-243) that has both commercial and open source implementa-
tions. The JDO 1.0 specification was also released in 2002, and as of this writing,
the JDO 2.0 specification is nearing release.

 In this section I review what Hibernate and JDO provide in terms of the seven
ORM framework features I described in the previous section. Chapter 10 describes
the O/R mapping capabilities in EJB 3.

4.3.1 Declarative mapping between the object model
and the schema

JDO and Hibernate define the O/R mapping using XML documents. Historically,
Hibernate provided a much richer set of O/R mapping features than most of the
early JDO implementations. However, over time JDO implementations improved
considerably. JDO 1.0 implementations developed a rich set of ORM extensions, and
the newer JDO 2.0 standard incorporated many of those extensions and now pro-
vides a rich object/relational mapping. As a result, today Hibernate and JDO are
fairly comparable in terms of the object/relational mapping features they provide.

 One key difference between JDO and Hibernate is that JDO only supports
mapping fields to the database schema whereas Hibernate supports mapping
either fields or JavaBean-style properties. Usually, you only need to map fields,
but occasionally it is useful to map JavaBean properties instead. For example, the
getter can calculate the value that is stored in the database, and a setter can ini-
tialize nonpersistent fields.

 JDO and Hibernate let you map your objects to an existing schema. Alterna-
tively, Hibernate and many JDO implementations can generate the database
schema from the O/R mapping. This is extremely useful because it eliminates the
need to maintain the data definition language (DDL) files that define the data-
base schema. It also increases the portability of the application because Hibernate
and JDO will generate the database-specific DDL. Later I describe how this can be
useful when testing with an in-memory database. However, even though this fea-
ture is extremely convenient you cannot always use it. For example, you might
have to use database-specific schema definition features that are not supported by

118 CHAPTER 4

Overview of persisting a domain model
the ORM framework. Also, the database schema is often owned and maintained by
a separate group, such as the DBAs.

4.3.2 API for creating, reading, updating, and deleting objects

The Hibernate and JDO APIs are quite similar and consist of interfaces that play
the following roles:

■ A connection factory interface for creating connections

■ A connection interface, which represents a connection to the database and
provides methods for creating, loading, and deleting persistent objects

■ A query interface for executing queries

■ A transaction interface for managing transactions

Table 4.1 shows the interfaces provided by Hibernate and JDO that play these
roles.

The repositories in the example application call the connection and query inter-
faces to create, find, and delete persistence objects. The POJO façade calls the
connection factory to create a connection, the transaction interface to manage
transactions, and the connection interface to detach and attach objects.

 In chapters 5 and 6 we will see that the business tier typically uses a single con-
nection while handling a request from the presentation tier. It creates a connection
at the start of each request and closes the connection at the end of handling the
request. A Hibernate application creates a Session by calling SessionFactory
.openSession(), and a JDO application creates a PersistenceManager by calling Per-
sistenceManagerFactory.makePersistenceManager(). The application can then
use Session or PersistenceManager to create, load, or delete objects; create a query;
and access the transaction interface.

Table 4.1 The key JDO and Hibernate interfaces

Role JDO Hibernate

Connection factory PersistenceManagerFactory SessionFactory

Connection PersistenceManager Session

Query Query Query

Transaction Transaction Transaction

Overview of JDO and Hibernate 119
 Table 4.2 shows the key methods defined by the Session and PersistenceMan-
ager interfaces.

As you can see, Session and PersistenceManager define methods with very similar
purposes. For example, the save() and makePersistent()methods persist an
object, and the load() and getObjectById() methods load the specified instance.
There are also methods for creating queries, accessing the transaction object, and
closing the connection.

4.3.3 Query language

Hibernate and JDO provide several options for executing queries. An application
can use either object queries, which are queries expressed in terms of objects, or
SQL native queries, which are written in SQL. JDO and Hibernate provide a textual
query language for writing object queries. In addition, Hibernate has what are
called criteria queries, which are nontextual queries.

Object queries
Object queries are the easiest to use because they take full advantage of the ORM
framework. JDO and Hibernate each have a textual query language for object que-
ries. JDO object queries are written in JDO Query Language (JDOQL), whose syn-
tax is based on Java expressions; Hibernate provides Hibernate Query Language
(HQL), whose syntax is similar to SQL. JDOQL and HQL queries usually return per-
sistent objects, but you can also write projection queries, which return DTOs and
other values.

Table 4.2 Examples of JDO PersistenceManager and Hibernate Session methods

Hibernate Session JDO PersistenceManager

Making an object persistent save() makePersistent()

Loading an object load() getObjectById()

Deleting an object delete() deletePersistent()

Creating a query createQuery()
createNamedQuery()

newQuery()
newNamedQuery()

Accessing the transaction
object

beginTransaction() currentTransaction()

Closing the connection close() close()

120 CHAPTER 4

Overview of persisting a domain model
Native SQL queries
Although we mainly use object queries, native SQL queries are useful when you
need to use database-specific features to get good performance. JDO and Hiber-
nate provide an API for executing a SQL query and will construct a collection of
objects from the result set. JDO native SQL queries can return either persistent
objects or DTOs, whereas Hibernate SQL queries can return only persistent objects.

Executing JDOQL, HQL, and SQL queries
JDOQL, HQL, and SQL queries are executed using the Query interface. A JDO
application creates a query by calling a PersistenceManager method, and a Hiber-
nate application creates a query by calling a Session method. The method that
creates the query takes as a parameter either the query string or the name of the
query that is defined in the ORM document. The application can then call various
setters to define various aspects of the query. A JDO application executes the
query by calling Query.execute(), which returns a list of persistent objects or val-
ues. A Hibernate application executes a query by calling either Query.list(),
which returns a list, or Query.scroll(), which returns a ScrollableResults that
allows the application to navigate through the underlying JDBC ResultSet.

Hibernate criteria queries
In addition to HQL and SQL queries, Hibernate has criteria queries, which are
object queries that are defined using objects rather than a textual query language.
Later in chapter 11 you will see how Hibernate criteria queries are extremely use-
ful when constructing queries dynamically since they avoid the need to write
messy code that concatenates query fragment strings.

4.3.4 Support for transactions

The fourth of the seven ORM framework features is transaction management.
Hibernate and JDO provide a Transaction interface, which allows an application
to explicitly manage transactions. A JDO application obtains a Transaction object
by calling PersistenceManager.currentTransaction(). The application begins a
transaction by calling Transaction.begin(), commits a transaction by calling
Transaction.commit(), and roll backs a transaction by calling Transaction.roll-
back(). Similarly, a Hibernate application accesses a Transaction object by calling
Session.beginTransaction(), which begins a transaction. The application can
commit a transaction by calling Transaction.commit() or roll back a transaction
by calling Transaction.rollback(). Later in chapter 7, you will see how the

Overview of JDO and Hibernate 121
Spring framework provides AOP interceptors that call the transaction manage-
ment APIs on behalf of the application.

 In addition, JDO and Hibernate provide JTA integration. A Hibernate Session
or JDO PersistenceManager that is opened within a JTA transaction will automati-
cally participate in the transaction.

4.3.5 Lazy and eager loading

By default, JDO and Hibernate load objects lazily, but you can configure them to
load objects eagerly. The details differ by framework but they provide roughly
equivalent functionality.

Configuring eager loading in JDO
You configure eager loading in JDO by using fetch groups. A JDO fetch group
specifies a graph of interconnected objects and is defined in the XML mapping
document. When an application loads an object or executes a query, it can iden-
tify the objects to eagerly load by specifying one or more active fetch groups.

 You can use fetch groups to configure eager loading in one of two ways:

■ Statically configure a relationship to be always loaded.

■ Activate particular fetch groups at runtime to dynamic control which rela-
tionships to eagerly load.

For more information on JDO fetch groups, see chapter 5.

Configuring eager loading in Hibernate
Hibernate provides two ways to configure eager loading. You can specify in the
O/R mapping which relationships should be eagerly loaded. This approach is
useful when a relationship is always traversed by the application. Alternatively,
you can use a Hibernate query with what is termed a fetch join to specify which
objects should be eagerly loaded by a query. By using different queries at
runtime, you can dynamically control which objects are eagerly loaded when
handling a request. See chapter 6 for more information about Hibernate and
eager loading.

4.3.6 Object caching

Hibernate and JDO cache objects, albeit with some minor differences. By default,
Hibernate caches objects in the Session for the lifetime of the session, which can
span multiple transactions, and JDO caches objects in the PersistenceManager for
the duration of a transaction. However, this difference is not usually that important

122 CHAPTER 4

Overview of persisting a domain model
because a Hibernate application typically uses a single Session and transaction per
request and a JDO application uses a single PersistenceManager and transaction
per request.

 In addition to caching objects in the Hibernate Session or the JDO Persis-
tenceManager, most implementations support process-level caching, which can
often significantly improve the performance of an application. Some implementa-
tions also provide a query cache, which sometimes increases performance. Let’s
see how those mechanisms work.

Process-level caching
Applications often access the same set of objects repeatedly, and so you can
improve performance by caching those objects across transactional boundaries.
Hibernate and some JDO implementations can be configured to cache objects for
longer than a single request or transaction in a process-level cache. The ORM
framework looks in the process-level cache for an object after looking in the Ses-
sion or PersistenceManager-level cache. If the object is in the process-level cache,
the ORM framework does not need to access the database, which often improves
the performance of the application significantly.

 It is important to turn off eager loading for any cached objects since that
bypasses the cache and fetches them from the database. For example, if a restau-
rant was eagerly loaded with its referencing pending order, the persistence frame-
work would never look in the process-level cache for the restaurant. Using lazy
loading ensures that the persistence framework will look in the process-level cache.

 There are some important issues to consider when using a process-level cache,
such as what objects to cache and how to handle updates to cached objects. The
process-level cache is typically highly configurable. You can usually control which
classes are stored in the cache, how many objects should be cached, and for how
long. It is best suited to storing frequently accessed but rarely modified objects.
For example, in the Food to Go application, restaurants, menu items, and other
restaurant-related objects are frequently accessed but rarely change; thus, it
makes sense to cache those objects in the process-level cache to avoid loading
them repeatedly from the database.

 One challenge with using a process-level cache is handling updates to cached
objects. This isn’t an issue if a single-server application updates the database using
the persistence framework since the framework updates the process-level cache.
There are, however, a couple of ways in which the objects in the cache can
become out of date. First, in a clustered application one cluster member can
update objects that are stored in another cluster member’s cache. Second, the

Overview of JDO and Hibernate 123
database can be updated without using the persistence framework by either a
module written in JDBC or by a different application. In most applications you
need to arrange for the process-level cache to load the changed objects from the
database in order to prevent the application from working with old data.

 There are three ways to do this:

■ Periodically invalidate cached objects—If the application can tolerate slightly
stale data, then you can configure the process-level cache to periodically
invalidate cached objects and force the latest copies to be loaded from the
database.

■ Broadcast change notifications—If the application is clustered, then you can
configure the persistence framework running in each application that
makes up the cluster to broadcast change notifications so that other cluster
members know to invalidate cached copies of the changed objects.

■ Programmatically invalidate cached objects—If the application has bypassed the
persistence framework and updated the database using some other mecha-
nism such as JDBC, you can programmatically invalidate cached objects and
force them to be reloaded. This approach can only be used by applications
that are aware of the process-level cache.

Cached objects that are updateable should typically use optimistic locking (see
chapter 12) because that will prevent the application from blindly overwriting
changes in the database. If a transaction updates a cached object that had already
been changed in the database, the optimistic locking failure will cause the trans-
action to be rolled back. The persistence framework will remove the stale data
from the cache, and the application can retry transaction with the latest version
of the data.

 Despite the complication of handling updated objects, a process-level cache is
an extremely useful way to improve the performance of an application that uses a
persistence framework.

Query caching
Hibernate and some JDO implementations also provide a query cache, which
stores the primary keys of the objects found by a query. When it executes a query,
the ORM framework looks in the query cache for the result before accessing the
database. If the query cache contains the results of the query, the framework then
looks up the objects in the process-level cache. A query cache can sometimes
improve performance but is only useful for read-only data because the ORM
framework flushes all cached queries that involve a modified table.

124 CHAPTER 4

Overview of persisting a domain model
4.3.7 Detached objects

The last of the seven ORM framework features is detached objects. Hibernate
objects are automatically detached when their Session is closed. The application
simply has to ensure that the objects that it needs are loaded before the Session is
closed. It can either eagerly load or navigate to the objects that it needs. Although
this sounds simple, as you will see in chapter 7 this can sometimes require extra
code in the façade, which encapsulates the business logic, to traverse the object
graph and force objects to be loaded. The application can reattach those objects
to a new Session and Hibernate will update the database with the changes.

 Detached objects are a new feature in JDO 2.0. There are three ways to detach
objects in JDO 2.0. One option is to configure the PersistenceManager to behave
the same way as a Hibernate Session and to automatically detach objects when it
is closed. Another option is to serialize the JDO objects. The third option is to
explicitly detach objects by invoking the PersistenceManager. This option gives
the application the most control over which objects are detached because the
objects to detach are specified using a fetch group. The PersistenceManager
returns nonpersistent, detached copies of the specified objects. An application
can later reattach those objects to a different PersistenceManager. The JDO imple-
mentation will update the database with the changes.

4.3.8 Hibernate vs. JDO

As you can see, at a high level JDO and Hibernate provide an equivalent set of fea-
tures. Hibernate and the various JDO implementations are constantly improving, so
no single product has the lead for very long. Many of the controversial differences
are mostly inconsequential. Also, benchmarks such as TORPEDO [TORPEDO] show
that the performance is similar. So how do you choose between them?

 Some important nontechnical issues differentiate JDO and Hibernate. From
the outset Hibernate has been an open source project, which has contributed
greatly to its incredible popularity. Budget-constrained organizations and other
open source projects have been able to download and use it. In comparison, JDO
is a standard with multiple implementations. Until recently the main JDO imple-
mentations were commercial implementations, whose licensing fees discouraged
some organizations from using JDO. However, today there are open source JDO
implementations such as JPOX [JPOX]. In addition, some organizations want to
avoid being dependent on a product that is available from a single source and
thus use a standards-based product that is available from multiple vendors.

Designing repositories with Spring 125
 Some technical issues differentiate JDO and Hibernate. For example, JDO
implementations support other data sources, including Lightweight Directory
Access Protocol (LDAP) and object databases. Throughout the rest of the book you
will see several subtle yet important issues that differentiate JDO and Hibernate.

 It is also worth remembering that JDO and Hibernate are nonintrusive tech-
nologies; the persistent classes have no dependencies on JDO or Hibernate APIs.
Consequently, switching to a different ORM framework can be straightforward
because the only classes that need to be rewritten are the repositories.

4.4 Designing repositories with Spring

Now that you have gotten an overview of Hibernate and JDO, let’s look at how to
design the repositories, which provide methods for creating, finding, and deleting
persistent objects. They are the only part of the domain model that call Hibernate
or JDO to do this. The persistent classes are unaware that they are persistent since
JDO and Hibernate provide transparent persistence. Because of the similarity of
the JDO and Hibernate APIs, we can use the same approach to implement the JDO
and Hibernate repositories. In this section, you will learn how to use Spring to
simplify the implementation of the repository and how to design the repositories
in a way that makes them easier to test.

4.4.1 Implementing JDO and Hibernate repositories

A repository consists of an interface, which specifies the public methods, and an
implementation class, which calls the persistence framework. Because the persis-
tence framework-specific classes are encapsulated behind interfaces, the rest of
the domain model classes are decoupled from both the persistence framework
and the database. This is an excellent example of using interfaces to create more
decoupled applications, where implementation details “plug into” the interfaces
that define the behavior. Furthermore, as we saw in chapter 3, it enables the
domain model classes to be tested using mock repositories.

 A repository implementation class calls the Connection or the Query interface
to manipulate persistent data. The repository uses the Connection interface to cre-
ate, load, and delete persistent objects. It uses the Query interface to execute que-
ries that load multiple objects. However, as you will see in this section, rather than
calling the persistence framework APIs directly the repository implementation
classes use the Spring framework’s ORM support classes.

126 CHAPTER 4

Overview of persisting a domain model
4.4.2 Using the Spring ORM classes

In chapter 1, I explained that one of the key benefits of using Spring is that it
makes implementing Hibernate and JDO applications considerably easier. One
reason why it simplifies application development is because, as you will see in
chapters 7 and 8, it provides AOP interceptors and filters for opening and closing
JDO and Hibernate connections and managing transactions. Another reason why
Spring makes development easier is it provides the JdoTemplate and Hibernate-
Template classes, which are easy-to-use wrappers around the JDO and Hibernate
APIs. These ORM template classes implement the boilerplate code that’s required
when using a persistence framework and significantly simplify the implementa-
tion of repositories. In order to see the benefit of using Spring’s ORM template
classes, let’s first look an example of a repository that does not use them.

Using Hibernate without a Spring HibernateTemplate
Listing 4.1 shows an example Hibernate repository method, which loads an object
by calling Session.load(). It uses SessionFactoryUtils, which is a Spring frame-
work helper class that defines various static methods for managing Hibernate Ses-
sions and mapping exceptions. The repository method calls SessionFactory-
Utils.getSession() to get a Session and SessionFactoryUtils.releaseSession()
to release the Session. The method uses a try/catch/finally to map the Hiber-
nateException to a Spring data access exception and to ensure that release-
Session() is always called.

public class HibernatePendingOrderRepositoryImpl
 implements PendingOrderRepository {
 private SessionFactory sessionFactory;

 public HibernatePendingOrderRepositoryImpl(
 SessionFactory sessionFactory) {
 this.sessionFactory = sessionFactory;
 }

 public PendingOrder findOrCreatePendingOrder(String pendingOrderId) {
 if (pendingOrderId != null)
 return findPendingOrder(pendingOrderId);
 else
 return createPendingOrder();
 }

 public PendingOrder findPendingOrder(String pendingOrderId) {
 Session session =

Listing 4.1 HibernatePendingOrderRepositoryImpl

Designing repositories with Spring 127
 SessionFactoryUtils.getSession(
 sessionFactory, true);
 try {

 return (PendingOrder)
 session.load(PendingOrder.class,
 new Integer(pendingOrderId));

 } catch (HibernateException e) {
 throw SessionFactoryUtils.
bbbbbb➥ convertHibernateAccessException(e);
 } finally {
 SessionFactoryUtils.releaseSession(session,
 sessionFactory);
 }
 }

 public PendingOrder createPendingOrder() {
 …
 }
}

Let’s take a closer look at this listing:

The first piece of boilerplate code calls SessionFactoryUtils.getSession() to get
a Session for the specified SessionFactory. This method will return the Session
that has been opened and bound to the thread by a Spring AOP interceptor or fil-
ter. If there isn’t an existing Session, the true argument tells getSession() to
open a new Session. This feature enables the repository to work both inside the
application and in a unit-testing environment.

The Session.load() method loads the specified object.

The second piece of boilerplate code consists of a catch clause and a finally clause.
The catch clause calls SessionFactoryUtils.convertHibernateAccessException()
to convert the Hibernate-specific HibernateException to a generic Spring data
access exception. A Spring data access exception is an unchecked exception that
enables the higher levels of the application to treat all data access exceptions uni-
formly. The finally clause calls SessionFactoryUtils.releaseSession(), which
closes the Session if it was opened by the call to SessionFactoryUtils.getSes-
sion(). The releaseSession() method does nothing if getSession() returned an
already open Session.

As you can see, in addition to the single call to Session.load() there are several
lines of boilerplate code to manage the Session and map the HibernateException.

B

C

D

B Boilerplate
code

C Code that loads
the object

D More
boilerplate

128 CHAPTER 4

Overview of persisting a domain model
This code is certainly simple, but it is potentially error-prone and can add signifi-
cantly to the size of the application. In addition, the calls to static methods compli-
cate testing. You cannot use mock objects, which enable the code to be tested
independently of the database, and are extremely useful when the repository con-
tains complex code.

Using the Spring template classes
Using Spring’s ORM template classes can significantly simplify the implementa-
tion of a repository. They take care of obtaining and releasing a connection and
map persistence framework-specific exceptions to Spring data access exceptions.
The template classes also provide convenience methods that mirror the methods
defined by the Connection and Query interfaces. As result, many repository meth-
ods become one-liners. For example, here is the HibernatePendingOrderReposi-
toryImpl we looked at earlier rewritten to use the HibernateTemplate class:

public class HibernatePendingOrderRepositoryImpl extends
 HibernateDaoSupport implements PendingOrderRepository {

 public HibernatePendingOrderRepositoryImpl(
 HibernateTemplate template) {
 setHibernateTemplate(template);
 }
…
 public PendingOrder findPendingOrder(String pendingOrderId) {
 return (PendingOrder)getHibernateTemplate().
bbbbbbbbbbb➥ load(PendingOrder.class,
 new Integer(pendingOrderId));
 }
…
}

Here, HibernatePendingOrderRepositoryImpl implements the PendingOrderRe-
pository interface and extends HibernateDaoSupport, which is a Spring support
class that stores a HibernateTemplate and provides the setHibernateTemplate()
and getHibernateTemplate() methods. HibernatePendingOrderRepositoryImpl
defines a constructor that stores the template parameter by calling setHibernate-
Template(). The findPendingOrder() method gets the template by calling getHi-
bernateTemplate(). This method calls HibernateTemplate.load(), which gets the
Hibernate Session, calls Session.load(), and then closes the Session if required.

 As you can see, findPendingOrder() is extremely simple because HibernateTem-
plate hides all of the calls to SessionFactoryUtils and eliminates the need to use
a try/catch/finally. HibernateTemplate takes a SessionFactory as a constructor

Designing repositories with Spring 129
argument. HibernateTemplate is typically instantiated by Spring’s bean factory and
passed by dependency injection to the repositories that need it.

 Using an ORM template class also facilitates testing. The repository methods
that call a convenience method can be tested with a mock template object. A test
case can construct a repository passing in a mock template object and verify that
the expected method is called.

 Despite these advantages, you cannot always use the convenience methods
because they do not expose all of the functionality of the persistence framework’s
APIs.

4.4.3 Making repositories easier to test

A repository must call the persistence framework APIs directly if the ORM template
does not expose the functionality that it needs. It could use the SessionFactory-
Utils and PersistenceManagerFactoryUtils classes to obtain a connection, but
code that uses those classes is more difficult to test because it can’t be tested with
mock objects. A better approach is to use an ORM template class to execute what
Spring refers to as a callback.

The trouble with anonymous callback classes
A Spring callback object is an instance of a class that implements a callback inter-
face. It has a method that is passed a persistence framework connection as a
parameter, and it can manipulate persistent objects. The simplest way to execute a
callback with an ORM template class is to use an anonymous class. For example,
the RestaurantRepository’s findRestaurants() method could use the JdoTem-
plate to execute a callback that uses the Query interface directly:

public class JDORestaurantRepositoryImpl extends JdoDaoSupport
 implements RestaurantRepository {

 public List findRestaurants(final Address deliveryAddress,
 final Date deliveryTime) {
 JdoTemplate jdoTemplate = getJdoTemplate();
 return (List) jdoTemplate.executeFind(new JdoCallback() {
 public Object doInJdo(PersistenceManager pm) {
 Map parameters = makeParameters(deliveryAddress,
 deliveryTime);
 Query query = pm.newQuery(Restaurant.class);
 query.declareVariables("TimeRange tr");
…
 return query.executeWithMap(parameters);
 }
 });
 }

130 CHAPTER 4

Overview of persisting a domain model
 private Map makeParameters(Address deliveryAddress,
 Date deliveryTime) {
 Map params = new HashMap();
 params.put("zipCode", deliveryAddress.getZip();
 …
 return params;
 }
}

In this example, JdoTemplate.executeFind() is passed a callback that is an
instance of an anonymous class. The callback has a doInJdo() method, which
takes a PersistenceManager as a parameter. It creates and executes a Query calling
methods such as declareVariables() that are not supported by the JdoTemplate.
Behind the scenes, the template class obtains a connection, invokes the callback,
and then releases the connection. Using a template class to execute a callback is a
lot easier than using a SessionFactoryUtil or PersistenceManagerFactoryUtil
directly because you do not have to write try/catch/finally blocks.

 However, the callback-based API with instances of anonymous classes also com-
plicates testing. For example, because the findRestaurants() contains a fair
amount of code, it makes sense to use some mock object tests rather than testing
it directly against the database. A mock object test would want to verify that it
invokes JdoTemplate.executeFind() correctly. Unfortunately, it would be difficult
to define a mock object expectation that does this because executeFind() is
passed an instance of anonymous class.

Using named callback classes
A better approach, which improves testability, is to use a named callback class that
has an equals() method. The repository instantiates the callback class, passing the
query’s parameters to its constructor, and executes it using the template. The
equals() method returns true if the two callback objects have the same parame-
ters. This class enables a mock object expectation to verify that the template is
invoked with the correct callback. The expectation uses the equals() methods to
compare the actual and expected callbacks. MyExampleCallback is an example of
such a callback. It implements the JdoCallback interface and defines an equals()
method that returns true if the delivery information in the two objects is the same:

 class MyExampleCallback implements JdoCallback {
 private final Address deliveryAddress;

 private final Date deliveryTime;

Designing repositories with Spring 131
 public MyExampleCallback(Address deliveryAddress,
 Date deliveryTime) {
 this.deliveryAddress = deliveryAddress;
 this.deliveryTime = deliveryTime;
 }

 public boolean equals(Object other) {
 if (other == null)
 return false;
 if (!(other instanceof MyExampleCallback))
 return false;
 MyExampleCallback x = (MyExampleCallback) other;
 return deliveryAddress.equals(x.deliveryAddress)
 && deliveryTime.equals(x.deliveryTime);
 }

 public Object doInJdo(PersistenceManager pm) {
 Map params = makeParameters(deliveryAddress,
 deliveryTime);
 Query query = pm.newQuery(Restaurant.class);
 query.declareVariables("…");
 query.declareImports("…");
 return query.executeWithMap(params);
 }

 private Map makeParameters(Address deliveryAddress,
 Date deliveryTime) {

 return…;
 }
 }

Let’s take a closer look at MyExampleCallback:

The constructor takes the delivery information as parameters and stores it in a field.

The equals() method returns true if the delivery information is the same in both
callbacks.

The doInJdo() method executes the query.

And here is an example of a repository that uses it:

public class JDORestaurantRepositoryImpl extends JdoDaoSupport
 implements RestaurantRepository {

 public JDORestaurantRepositoryImpl(JdoTemplate jdoTemplate) {
 setJdoTemplate(jdoTemplate);
 }

B Saves delivery
information

B

C

D

C Tests for
equality

D Executes
the query

132 CHAPTER 4

Overview of persisting a domain model
 public List findRestaurants(Address deliveryAddress,
 Date deliveryTime) {
 JdoTemplate jdoTemplate = getJdoTemplate();
 return (List) jdoTemplate.executeFind(
 new MyExampleCallback(deliveryAddress,
 deliveryTime));
 }
}

This version of the findRestaurants() method instantiates a MyExampleCallback,
passing the delivery address and time as constructor parameters. It then executes
the callback using JdoTemplate.

 Because MyExampleCallback has an equals() method, it is easy to test find-
Restaurants() with a mock JdoTemplate that expects to be called with a particular
MyExampleCallback object:

public void testFindRestaurants() {
 expectedMyExampleCallback = new MyExampleCallback(…)

 mockJdoTemplate.expects(once())
 .method("executeFind")
 .with(eq(expectedMyExampleCallback))
 .will(returnValue(expectedRestaurants));

 JdoTemplate jdoTemplate =
 (JdoTemplate)mockJdoTemplate.proxy();

 RestaurantRepository r =
 new JDORestaurantRepository(jdoTemplate);

 List restaurants = r.findRestaurants(…);
 …
}

This test creates a MyExampleCallback containing the expected values. The mock
JdoTemplate verifies that executeFind() is called with a MyExampleCallback that is
equal to the expected one. In chapters 5 and 6 you will see more examples of
repositories that have been implemented with this approach.

 We have now seen an overview of the key ORM concepts and the capabilities of
JDO and Hibernate. The next step is testing an application’s persistence layer.

4.5 Testing a persistent domain model

Every six months, Anne-Marie, who is my dental hygienist, gives me the same lec-
ture on the importance of flossing. And each time, I half-heartedly promise that I
will make more of an effort—but I never keep that promise. Some developers

Testing a persistent domain model 133
treat testing in the same way I treat flossing: It’s a good idea but they either do it
with great reluctance or not at all.

 Nevertheless, testing is a key part of the software development process, and just
as flossing prevents dental decay, testing prevents software decay. The persistent
layer, like most other application components, is not immune to decay and so
requires testing. You need to write tests that verify that the domain model is
mapped correctly to the database and that the queries used by the repositories
work as expected. There are two main challenges when testing a persistent
domain model. The first challenge is writing tests that detect the ORM-specific
bugs. These bugs are often caused by inconsistencies between the domain model,
the ORM document, and the database schema. For example, one common mis-
take is to forget to define the mapping for a newly added field, which can cause
subtle bugs. Database constraints are another common problem that prevents the
application from creating, updating, or deleting persistent objects. It’s essential to
have tests for the persistent domain model that catch these and other issues.

 The second challenge is effectively testing the persistent domain model while
minimizing the amount of time it takes for the tests to run. The test suite for the
O/R mapping of a large domain model can take a long time to execute. Not only
are there a large number of tests but also a test that accesses the database can take
much longer to run than a simple object test. Although some database testing is
unavoidable, it’s important to find ways to do testing without it.

 In this section you will learn about the different kinds of ORM bugs and how to
write tests to detect them. I describe which aspects of the O/R mapping must be
tested against the database and which other aspects can be tested without a data-
base in order to minimize test execution time. You will see example tests that use
the strategies described here in chapters 5 and 6.

4.5.1 Object/relational testing strategies

A variety of bugs can lurk in the O/R mapping, including the following:

■ Missing mapping for a field

■ References to nonexistent tables or columns

■ Database constraints that prevent objects from being inserted, updated, or
deleted

■ Queries that are invalid or that return the wrong result

■ Incorrect repository implementation

134 CHAPTER 4

Overview of persisting a domain model
Many bugs are caused by the domain model, ORM documents, and the database
schema getting out of sync. For example, it is easy to change the domain model by
adding a new field or renaming an existing one and then forgetting to add or
update the O/R mapping for that field, which specifies how it is stored in the data-
base. Some ORM frameworks will generate an error message if the O/R mapping for
a field is undefined, but others (including Hibernate) will silently allow a field to be
nonpersistent, which can cause subtle and hard-to-find bugs. It is also quite easy to
forget to update the database schema when defining the mapping for a field.

 Some bugs are easily caught, such as those detected by the ORM framework at
startup. For instance, Hibernate complains about missing fields, properties, or con-
structors when the application opens a SessionFactory. Other kinds of bugs require
a particular code path to be executed. An incorrect mapping for a collection field
can remain undetected, for example, until the application tries to access the col-
lection. Similarly, bugs in queries are often not detected until they are executed. In
order to catch these kinds of bugs, we must thoroughly test the application.

 One way to test a persistence layer is to write tests that run against the data-
base. For example, we can write tests that create and update persistent objects and
call repository methods. Yet one problem with this kind of testing is that the tests
take a while to execute even when using an in-memory database such as HSQLDB.
Another problem is that they can fail to detect some bugs, such as a missing map-
ping for a field. And writing them can be a lot of work.

 A more effective and faster approach is to use several kinds of tests that test
each part of the persistence layer separately. Some kinds of tests run against the
database and others run without the database. The tests that run against the data-
base are:

■ Test that create, update, and delete persistent objects

■ Tests for the queries that are used for the repositories

■ Tests that verify that the database schema matches the object/relational
mapping

There are also tests that don’t use the database:

■ Mock object tests for the repositories

■ Tests that verify the O/R mapping by testing the XML mapping documents

Next we’ll look at these different kinds of tests, beginning with those that run
against the database.

Testing a persistent domain model 135
4.5.2 Testing against the database

Tests that run against the database are an essential part of testing the persistent
domain model even though they take a relatively long time to execute. There are
two kinds of database-level tests. The first kind verifies that persistent objects can
be created, updated, and deleted. The second kind verifies the queries that are
used by the repositories. Let’s look at each approach.

Testing the persistent objects
One goal of testing the persistent domain model is to verify that persistent objects
can be saved in the database. A simple approach is to write a test that creates a
graph of objects and saves it in the database. The test doesn’t attempt to verify
that the database tables contain the correct values and instead fails only if an
exception is thrown by the ORM framework. This kind of test is a relatively easy
way to find basic ORM bugs, including missing mappings for a class and missing
database columns. It also verifies that the database constraints allow new objects
to be inserted into the database. However, even though this kind of test is a good
way to start, it does not detect other common ORM bugs, such as constraint viola-
tions that occur when objects are updated, added, or deleted.

 We can catch those types of bugs by writing more elaborate tests that update
and delete persistent objects. As well as saving an object in the database, a test
loads the object, updates it, and saves it back. A test can also delete the object. For
example, a test for PendingOrder could consist of the following steps:

1 Create a PendingOrder and save it.

2 Load it, update the delivery information, and save it.

3 Load it, update the restaurant, and save it.

4 Load it, update the quantities, and save it.

5 Load it, update the quantities, and save it (again to test deleting line items).

6 Load it, update the payment information, and save it.

7 Delete the PendingOrder.

This testing approach verifies that the database can store all states of an object
and detects problems with database constraints when creating or destroying asso-
ciations between objects. Each step of the test consists of a database transaction
that uses a new persistence framework connection to access the database. Using a
new transaction and connection each time ensures that objects are really persisted
in the database and loaded again. It also makes sure that deferred constraints,

136 CHAPTER 4

Overview of persisting a domain model
which are not checked until commit time, are satisfied. The downside of this
approach is that it changes the database, which requires each test to initialize the
database to a known state.

 We could also enhance the tests to verify that an object’s fields are mapped cor-
rectly by validating the contents of the database tables. After inserting the object
graph into the database, the test verifies that the database contains the expected
rows and column values. A test can verify the contents of the database by using to
JDBC to retrieve the data. Alternatively, it could use DbUnit [DbUnit], which is a
JUnit extension, to compare the database tables against an XML file that contains
the expected values. However, although this approach is more thorough it is
extremely tedious to develop and maintain these kinds of tests. In addition, the
tests don’t detect a missing mapping for a newly added field or property. Conse-
quently, a much better way to test that classes and field/properties are mapped
correctly is, as I describe later, to test the ORM document directly.

 Tests that insert, update, and delete persistent objects are extremely useful, but
they can be challenging to write. One reason is because some objects have lots of
states that need to be tested. Another reason for the complexity is the amount of
setup often required. Tests may have to create other persistent objects that are ref-
erenced by the object being tested. For example, in order to persist a Pendin-
gOrder and its line items, the test has to initialize the database with Restaurant
and MenuItems. In addition, an object’s public interface doesn’t usually allow its
fields to be set directly and so a test must call a sequence of business methods with
the correct arguments, which can involve even more setup code. As a result, it can
be challenging to write good persistence tests.

 The other drawback with this approach is that executing the tests can be slow
because of the number of times the database is accessed. Each persistent class can
have multiple tests that each consists of multiple steps. Each step makes multiple
calls to the ORM framework, which executes multiple SQL statements. Conse-
quently, these tests usually take too long to be part of the unit tests suite and
instead should be part of the functional tests.

 Even though these persistent object tests can be difficult to write and can take
a significant amount of time to execute, they are an important part of the test suite
for a domain model. If necessary you can always start off by writing tests that just
save objects in the database and over time add tests that update and delete objects.

Testing queries
We need to write database-level tests for some of the queries that are used by the
repositories. One basic way to test the queries is to execute each query once and

Testing a persistent domain model 137
ignore the result. This quick and easy approach can catch lots of basic errors and
is often all you need to do for simple queries.

 For more complex queries, it is usually important to detect bugs in the logic of
the query such as using < instead of <=. To catch these kinds of bugs, we need to
write tests that populate the database with test data, execute the query, and verify
that it returns the expected objects. Unfortunately, these kinds of tests are time
consuming to both write and execute.

 There are a couple of ways a test can execute a query. One option is to execute
the query directly using the Spring and Hibernate APIs. The other option is to
execute the query indirectly by invoking the repository. Which of these options is
better depends on various factors, including the complexity of the repository. If
the repository is fairly simple, then it can be easier to test the query by calling the
repository because it is straightforward to execute the query with a particular set
of arguments. If the repository is more complex, then testing the queries directly
can be easier.

 To be able to test a query independently of the repository that executes it, the
query must be stored separately from the repository. The easiest way to accomplish
this is to use named queries that are defined in the mapping document. Both Hiber-
nate and JDO 2.0 let you define queries in the XML mapping document and provide
an API for executing them by name. In addition to keeping the queries separate
from the repositories, it is a lot more manageable to define multiline queries in an
XML document than it is to do so in Java code by concatenating multiple strings.
Alternatively, if you are using an ORM framework that doesn’t support named que-
ries, such as a JDO 1.x implementation, then you should store the queries in a prop-
erties file. Once you have done this, the queries can be tested separately.

Verifying that the schema matches the mapping
Unless the schema is generated from the O/R mapping, it is possible for the map-
ping and the schema to get out of sync. It is quite easy, for example, to forget to add
a new column to a table after defining the mapping for a field. Consequently, we
must write tests that verify that the database schema matches the O/R mapping.

 One way to test the database schema is to extract the table and column names
from the mapping document and use the JDBC metadata APIs to verify that every
table and column exists in the database schema. This kind of test executes fairly
quickly because it makes relatively few calls to the database. However, the one
drawback is that you have to write a lot of code to implement this kind of test.

 A much easier option that you can use some with ORM frameworks such as Hiber-
nate is the ORM framework’s schema generation feature. Some ORM frameworks

138 CHAPTER 4

Overview of persisting a domain model
provide an API to generate a SQL script that adds the missing tables and columns
to the database schema. It is extremely easy to write a test that generates the script
and fails if it contains SQL commands to add tables or columns.

Using an in-memory database
A great way to speed up database-level tests is to use an in-memory SQL database
such as HSQLDB [HSQLDB]. An in-memory database runs in the application’s JVM
and is a lot faster than a regular database because there is no network traffic or
disk access. Because the ORM framework insulates application code from many
aspects of the database, some aspects of using an in-memory database are very
straightforward. To configure the ORM framework to use the in-memory database,
you typically have to specify the appropriate JDBC driver and other settings. Once
you have done this, the ORM framework will automatically generate the correct
SQL statements.

 One challenge when using an in-memory database is ensuring that its schema is
identical to the production database’s schema. This isn’t a problem if the ORM
framework generates the database schema. However, if the production database
schema is maintained separately, then its definition might not be compatible with
the in-memory database. It could, for example, use vendor-specific data types and
other features. In order to use an in-memory database, you will need to use a dif-
ferent schema definition or generate its schema from the ORM. In either case,
there is no guarantee that the in-memory database has the same schema as the pro-
duction database. As a result, an in-memory database is only useful for certain kinds
of tests. You could, for example, use an in-memory database to test the queries.

 Another issue with using an in-memory database is that although it is faster
than a regular database, the tests can still be much slower than simple object tests.
This is because calling the ORM framework and accessing the database simply
involves a lot of overhead. In addition, initializing the database to the correct state
at the start of a test and verifying its state at the end can make the tests more com-
plicated. Consequently, in order to minimize test execution time and complexity
it is important to test as much as possible without the database.

4.5.3 Testing without the database

Testing against the database is certainly important, but a lot of testing can be done
without the database. We can verify that the O/R mapping correctly maps classes
and fields to tables and columns without even opening a database connection. We
can also test the repositories using mock objects. Let’s take a closer look.

Testing a persistent domain model 139
Verifying the mapping document
JDO and Hibernate define the O/R mapping using an XML document. We can
write tests that verify that the mapping document correctly specifies the mapping
from classes, fields, and relationships to tables, columns, and foreign keys. For
example, it is quite easy to write a test that verifies that a class is mapped to a par-
ticular table and that all of its fields are mapped to columns of that table. This
kind of test is extremely useful since it fails whenever you forget to map a newly
defined field. With a little bit more effort we could also write a test that verifies
that each field is mapped to the correct column.

 One straightforward way to implement this kind of test is to use XmlUnit
[XmlUnit], which is a JUnit extension for testing XML documents. A test for the
ORM can use XmlUnit to make assertions about the contents of the document.
For example, a test can verify that the PendingOrder class is mapped to the
PENDING_ORDER table using the following code:

class PendingOrderMappingTests extends XMLTestCase {

 public void testMapping() throws Exception {
 Document mappingDocument = …;
 assertXpathEvaluatesTo("PENDING_ORDER",
 "hibernate-mapping/class[@name='PendingOrder']/@table",
 mappingDocument);
 …
 }
}

The test case extends XMLTestCase, which is provided by XmlUnit. It calls
assertXpathEvaluatesTo(), which is an XmlUnit method that throws an excep-
tion if the specified XPath expression does not evaluate to the expected value.
The XPath expression used by this particular test retrieves the value of the table
attribute of a <class> element that is a child of <hibernate-mapping> and has a
name attribute whose value is PendingOrder. The test could also call to assertX-
pathEvaluatesTo() to verify that each field is mapped to the correct column. It is
also valuable to use reflection to get the names of all of the fields and verify that
each field is mapped.

 You can use XmlUnit to test the O/R mapping for a variety of ORM frame-
works. The one drawback is that writing the XPath expressions can be tricky. A
better option, which can be used with some ORM frameworks, is to get the O/R
mapping metadata from the ORM framework. Some ORM frameworks provide an
API, which returns Java objects that describe the mapping. An ORM test can then
make assertions about the objects. This approach does not require detailed

140 CHAPTER 4

Overview of persisting a domain model
knowledge about the structure of the mapping document but does require the
ORM framework to expose the necessary APIs. I describe how to write ORM tests in
more detail in chapters 5 and 6.

Mock object testing of repositories
We could test a repository using database-level tests. For example, one way to test
a repository method that executes a query is to populate data with test objects, call
the method, and verify that it returns the expected objects. The problem with this
approach is that it tests several things simultaneously: the repository, any queries
that it executes, and the O/R mapping. The test needs a lot of setup and executes
slowly. A better approach, which reduces the number of test cases and database
accesses, is to test the repository using mock objects and to test the queries against
the database separately.

 Consider, for example, the PendingOrder.createPendingOrder() method, which
creates a PendingOrder in the database. One way to test this method is to write a test
that calls it and then verifies that it inserted a row into the PENDING_ORDER table.
However, if you have written tests for the object/relational mapping, then you can
safely assume that HibernateTemplate.save() or JdoTemplate.makePersistent()
will work as expected. The repository test does not need to verify that a PendingOrder
will be inserted into the PENDING_ORDER table when the repository calls save() or
makePersistent(). We can therefore simplify and speed up the repository test by
using a mock object for HibernateTemplate or JdoTemplate and verifying that the
repository calls save() or makePersistent() as expected. We can use a similar
approach to test other repository methods.

4.5.4 Overview of ORMUnit

In order to make it easier to write tests for the O/R mapping and persistent
objects, I’ve written a simple JUnit extension called ORMUnit. It provides several
base classes that extend JUnitTestCase:

■ HibernateMappingTests: For testing a Hibernate object/relational mapping

■ JDOMappingTests: For testing a JDO object/relational mapping

■ HibernatePersistenceTests: For testing Hibernate objects and queries

■ JDOPersistenceTests: For testing JDO objects and queries

HibernateMappingTests and JDOMappingTests simplify the task of testing the object/
relational mapping. They provide methods for making assertions about the map-
ping and for verifying that it matches the database schema. For example, they make
it easy to write a test that verifies that all of a class’s fields are mapped to the database.

Performance tuning JDO and Hibernate 141
 JDOPersistenceTests and HibernatePersistenceTests make it easier to write
tests for persistent objects and queries. They take care of opening and closing the
PersistenceManager and Session; create the HibernateTemplate and JdoTemplate;
and provide methods for managing transactions. In chapters 5 and 6 you will see
examples of tests that use these classes.

 Automated testing is an important tool for ensuring that the application works
correctly. It’s something that we all need to do regularly (along with flossing). But
when we are developing an application we also need to consider performance.
Let’s now look at how to optimize the performance of an application that uses
JDO and Hibernate.

4.6 Performance tuning JDO and Hibernate

The database is often the bottleneck in an enterprise application, and to achieve
good performance it’s essential to tune the persistence layer and minimize the
number of calls to the database. We saw in section 4.3 that JDO and Hibernate
provide two main ways of improving performance. One way is to use eager load-
ing and to load related objects using a single SELECT statement. The other way is to
use process-level caching of objects and queries. An application can use both
eager loading and a process-level caching, but as you will see later on in this sec-
tion, using a process-level cache affects how you use eager loading.

 I begin this section by describing the SQL statements that Hibernate or JDO
application will use during the execution of an example use case without doing
any performance tuning. You will then see how eager loading can be used to opti-
mize performance. Finally, I describe how to use a process-level cache to optimize
performance. This section doesn’t get into the details of optimizing performance
when using a particular framework. For that, please see chapter 5, which describes
how to optimize performance with JDO, and chapter 6, which describes how to
improve performance of a Hibernate application.

4.6.1 Without any tuning

Let’s begin by considering what happens during the Place Order use case when
the user enters the payment information. The application first calls PlaceOrder-
Service to validate the payment information and update the pending order. It
then displays the pending order, its restaurant, and its line items on the confirma-
tion screen. By default, JDO and Hibernate will load all objects lazily, which means
that the call to PlaceOrderService will load only the PendingOrder. The restaurant

142 CHAPTER 4

Overview of persisting a domain model
or the line items will not be loaded until the application navigates to them. As a
result, the application executes several SQL SELECT statements:

select … from PENDING_ORDER po
 where po.PENDING_ORDER_ID=?
select … from RESTAURANT r
 where r.RESTAURANT_ID=?
select … from PENDING_ORDER_LINE_ITEM li
 where li.PENDING_ORDER_ID=?
select … from MENU_ITEM mi
 where mi.MENU_ITEM_ID=?
select … from MENU_ITEM mi
 where mi.MENU_ITEM_ID=?
…

The first SQL statement is executed when PlaceOrderService loads PendingOrder.
The next two SQL statements are executed when the application navigates from
PendingOrder to its restaurant and line items. The remaining SQL statements are
executed as the application navigates from each line to its menu item. This might
not seem like a lot of SQL statements, but imagine if the application is handling
tens or hundreds of requests per second. Let’s look at how eager loading can used
to improve performance.

4.6.2 Configuring eager loading

There are two ways to use configure eager loading for a relationship. One option
is to statically configure eager loading, which means that a related object will
always be loaded with its referencing object. The other option is to dynamically
configure eager loading and only load related objects when handling some
requests. In order to know which relationships need to be eagerly loaded and to
determine whether to do it statically or dynamically, we must identify the relation-
ships that are traversed while handling each kind of request.

 There are a few methods of determining which relationships are traversed
when handling each request. One is to look at the code and see what relationships
it traverses. Another is to run the application with logging enabled and examine
the SQL statements that are executed. Alternatively, the persistence framework
might have a tool that provides this information. Once you have done this analy-
sis, you will know which relationships are always traversed and which relationships
are only traversed by some requests.

 As you can see in figure 4.4, if we analyze the Place Order use we will find that
the application always traverses the PendingOrder-Restaurant and PendingOrder-
Line-MenuItem relationships and only sometimes traverses other relationships such
as Restaurant-MenuItem and PendingOrder-PendingOrderLineItem.

Performance tuning JDO and Hibernate 143
The application only traverses the Restaurant-MenuItem relationship when han-
dling the update quantities requests and only traverses PendingOrder-Pending-
OrderLineItem when handling some requests, such as updating payment
information.

 Once we have determined when each relationship is traversed, we can then
configure eager loading for some of them. We can statically configure eager load-
ing for those relationships that are always traversed and dynamically configure
eager loading for the other relationships. However, we do not want to blindly use
eager loading because that can sometimes reduce performance. For example,
eagerly loading two one-to-many relationships will create a result set containing
the Cartesian product of both relationships. If the result set is extremely large,
then it is usually better to load one of the relationships lazily. It’s important to use
eager loading carefully and do a lot of performance testing.

 Let’s see how to configure eager loading for the Place Order use case.

Configuring eager loading statically
If we statically configure eager loading for the PendingOrder-Restaurant and Pend-
ingOrderLineItem-MenuItem relationships, then the persistence framework will always
load the related objects. It will always load the pending order’s restaurant with the

:Pending
Order

:PendingOrder
LineItem

PendingOrder-PendingOrderLineItem

:Restaurant

:MenuItem

Restaurant-MenuItem
PendingOrderLineItem-MenuItem

PendingOrder-Restaurant

All requests

All requests

Update
quantities

Update payment information

Figure 4.4 The relationships traversed by each request in the Place Order use case

144 CHAPTER 4

Overview of persisting a domain model
pending order and load a line item’s menu item with the line item. This means, for
example, that when the application handles a request to update the payment infor-
mation, the persistence framework will execute the following SQL statements:

select …
from PENDING_ORDER po
 left outer join RESTAURANT r
 on po.RESTAURANT_ID=r.RESTAURANT_ID
where po.PENDING_ORDER_ID=?

select …
from PENDING_ORDER_LINE_ITEM li
 left outer join MENU_ITEM mi
 on li.MENU_ITEM_ID=mi.MENU_ITEM_ID
where li.PENDING_ORDER_ID=?

The first statement does a join between the PENDING_ORDER and RESTAURANT
tables and the second does a join between the PENDING_ORDER_LINE_ITEM and
MENU_ITEM tables. This is considerably more efficient than what we achieved
with the default settings. By making only two small changes to the ORM document
we were able to replace several SELECT statements with two SELECT statements.
However, we can do even better by configuring eager loading dynamically.

Configuring eager loading dynamically
By dynamically configuring eager loading for each request, we can often get the
persistence framework to load more objects with each SELECT statement. For
example, with the update payment information request we can configure the per-
sistence framework to eager load the PendingOrder-PendingOrderLineItem rela-
tionship in addition to the PendingOrder-Restaurant and PendingOrderLineItem-
MenuItem relationships. The persistence framework will then execute a single SQL
SELECT statement that does a join between the PENDING_ORDER, RESTAURANT,
PENDING_ORDER_LINE_ITEM, and MENU_ITEM tables.

select *
from FTGO_PENDING_ORDER po
 left outer join FTGO_RESTAURANT r
 on po.RESTAURANT_ID=r.RESTAURANT_ID
 left outer join FTGO_PENDING_ORDER_LINE_ITEM li
 on po.PENDING_ORDER_ID=li.PENDING_ORDER_ID
 left outer join FTGO_MENU_ITEM mi
 on li.MENU_ITEM_ID=mi.MENU_ITEM_ID
where po.PENDING_ORDER_ID=?

As you can see, by using eager loading we have replaced several SELECT statements
with a single SELECT statement. The details of how you dynamically configure

Performance tuning JDO and Hibernate 145
eager loading depend on the persistence framework, and I will describe the pro-
cess in chapters 5 and 6.

 Eager loading is only one of the ways to optimize the performance of a JDO or
Hibernate application. Another way to improve performance is to reduce data-
base accesses by using a process-level cache.

4.6.3 Using a process-level cache

Eager loading improves performance by loading related objects with a single
SELECT statement. In contrast, process-level caching improves performance by
eliminating SELECT statements entirely by retrieving objects from the process-level
cache instead of the database. To use a process-level cache, we must first determine
which objects to keep in the cache. In this example, the restaurant-related classes—
Restaurant, MenuItem, and TimeRange—are rarely updated and thus are good can-
didates for process-level caching. We would then configure the persistence frame-
work to cache those objects, which I describe how to do in chapters 5 and 6.

 Once we have decided which objects to cache, the next step is to optimize
object loading by configuring eager loading as described in the previous section.
When doing this, however, it is important to lazily load relationships from non-
cached objects to cached objects. Otherwise, the application would bypass the
cache and load the objects from the database.

 For example, when handling the update payment information request only
the PendingOrder-PendingOrderLineItem relationship should be loaded eagerly.
The other relationships, such as PendingOrder-Restaurant and PendingOrderLi-
neItem-MenuItem, must be loaded lazily to ensure that the restaurants and menu
items are retrieved from the process-level cache. The persistence framework
would use a SQL statement that does a join between the PENDING_ORDER and
PENDING_ORDER_LINE_ITEM tables:

select *
from FTGO_PENDING_ORDER po
 left outer join FTGO_PENDING_ORDER_LINE_ITEM li
 on po.PENDING_ORDER_ID=li.PENDING_ORDER_ID
where po.PENDING_ORDER_ID=?

The other objects would be retrieved from the process-level cache when the appli-
cation navigates to them.

4.6.4 Using the query cache

So far, we have optimized the loading of a pending order and its related objects
by caching the restaurants and using queries with fetch joins. We also need to

146 CHAPTER 4

Overview of persisting a domain model
consider improving the performance of the query that finds the available restau-
rants. One option is to use the query cache. Enabling caching for this query
might improve performance because JDO or Hibernate will then try to get the
results of the query from the query cache instead of executing a SQL statement.
However, because there are potentially many combinations of values for the
query’s parameters—for example, ZIP code and delivery time—it is unclear
whether there would be any benefit. We would have to analyze the running appli-
cation to determine whether there is any benefit. The query cache can improve
performance of other queries significantly.

 By using eager loading, process-level caching, and query caching, you can
often significantly improve the performance of your application. The details
depend on which persistence framework your application uses. You will learn
about those in the next two chapters, but before that we must look at the details of
the example schema.

4.7 The example schema

We have now had an overview of ORM and looked at how to write tests and opti-
mize the performance of a persistence layer. The next step is to learn how to per-
sist a domain model using Hibernate and JDO. Because I’m going to use the Food
to Go domain model as an example, it will be helpful to look at the database
schema that the application uses. The schema, which is shown in figure 4.5, is
quite similar to the domain model you saw in chapter 3.

 It uses many of the ORM techniques you saw earlier in section 4.1. Each of the
main classes in the domain model—PendingOrder, PendingOrderLineItem, Order,
OrderLineItem, Coupon, Restaurant, and MenuItem—has a corresponding table.
The Restaurant-MenuItem and PendingOrder-PendingOrderLineItem relationships,
which are one-to-many relationships, are represented by foreign keys in the
MENU_ITEM and PENDING_ORDER_LINE_ITEM tables, respectively.

 Similarly, the PendingOrder-PendingOrderLineItem, which is a many-to-one rela-
tionship, is represented by a foreign key in the PENDING_ORDER_LINE_ITEM table.
A restaurant’s ZIP codes—which in Java is a collection of strings and corresponds
to a many-to-many relationship between restaurants and ZIP codes—is represented
by the join table RESTAURANT_ZIP_CODE, which has foreign keys to both the RES-
TAURANT and ZIP_CODE tables.

 In the following chapters, this schema is used to illustrate some of the chal-
lenges you will face when trying to Hibernate or JDO to persist a domain model.

The example schema 147
RESTAURANT_ID <<pk >>
NAME

...

<<table >>
RESTAURANT

MENU _ITEM _ID <<pk>>
RESTAURANT _ID <<fk>>
NAME
PRICE

<< table >>
MENU _ITEM

ZIP_CODE <<pk>>

<<table >>
ZIP_CODE

RESTAURANT _ID <<fk>>
ZIP_CODE <<fk>>

<<table >>
RESTAURANT _ZIPCODE

ORDER _LINE_ITEM_ID <<pk >>
ORDER _ID <<fk>>
MENU_ITEM_ID <<fk>>
LINE_ITEM_INDEX
QUANTITY
PRICE
EXTENDED_PRICE
...

<< table >>
ORDER _LINE_ITEM

COUPON _ID << pk >>
TYPE
CODE <<unique >>
MINIMUM
PER _ DISCOUNT

<<table >>
COUPON

RESTAURANT _ID <<fk>>
DAY_OF_WEEK
OPEN_HOUR
OPEN_MINUTE
CLOSE_HOUR
CLOSE _MINUTE

<<table >>
RESTAURANT _TIME _RANGE

PENDING _ORDER _ID <<pk >>
RESTAURANT_ID <<fk>>
COUPON _ID <<fk>>
DELIVERY _TIME
DELIVERY_ ADDRESS _STREET 1
DELIVERY_ADDRESS _CITY
...

<<table >>
PENDING _ ORDER

1

ORDER _ID <<pk >>
RESTAURANT _ID <<fk>>
COUPON _ID <<fk>>
DELIVERY _TIME
DELIVERY_ADDRESS _STREET
DELIVERY _ADDRESS _CITY
...

<< table >>
PLACED _ORDER

PENDING _ORDER _LINE_ITEM _ID <<pk>>
PENDING _ORDER _ID <<fk>>
MENU_ITEM_ID <<fk>>
LINE_ITEM_INDEX
QUANTITY
...

<< table >>
PENDING _ORDER _ LINE_ITEM

Figure 4.5 The Food to Go database schema

148 CHAPTER 4

Overview of persisting a domain model
4.8 Summary

Business logic that is implemented using the Domain Model pattern consists of a
fine-grained web of interconnected objects. Many of those objects are persistent,
which means that when the application handles a request it must transfer objects
to and from the database. Storing domain objects in a database is a remarkably dif-
ficult problem. One reason is that any OO concepts such as inheritance have no
equivalent database concept. Another challenge is implementing transparent per-
sistence, which means that persistent objects are unaware that they are persistent.

 Persisting a domain model almost always requires an ORM framework because
it is simply too difficult to do yourself with JDBC. An ORM framework provides fea-
tures such as declarative object/relational mapping; an API for creating, finding,
updating, and deleting persistent objects; a query language; caching to improve
performance; and support for transactions. Two popular ORM frameworks are
JDO and Hibernate, which despite their numerous differences provide a compara-
ble set of features.

 Because JDO and Hibernate provide transparent persistence, the only domain
model classes that call the persistence framework APIs to create, find, and delete
persistent objects are the repositories, which define methods for these tasks. We
can use the Spring ORM template classes, which are wrappers around the ORM
framework APIs, to significantly simplify the implementation of these classes. Most
repository methods are easy to test one-liners that call a template class conve-
nience method.

 It is important to test the persistent classes and repositories because a variety of
bugs are caused by the domain model, the object/relational mapping, and the
database schema getting out of sync. Effective testing requires using a combina-
tion of different kinds of tests. Some tests (such as those that verify that persistent
objects can be created, updated, deleted, and queried) must use the database.
However, because testing with a database is slow, it’s important to test as much of
the persistence layer as possible without it.

 Now that you have learned about ORM concepts and the basics of Hibernate
and JDO, the next chapters examine those ORM frameworks in more detail, start-
ing with JDO.

Persisting a domain
model with JDO 2.0
This chapter covers

■ Persisting objects with JDO

■ Testing a JDO persistence layer

■ Using Spring’s JDO support classes

■ Tuning a JDO application
149

150 CHAPTER 5

Persisting a domain model with JDO 2.0
Now that you have gotten an overview of ORM framework concepts in JDO and
Hibernate, let’s look at how you can persist a domain model with JDO 2.0. As we
saw in chapter 4, JDO provides mostly transparent persistence for POJOs. Most
classes are unaware that they are persistent, and JDO supports the natural Java
programming style, including inheritance and recursive calls between objects. In
addition, because JDO can be used both inside and outside an application server,
you can develop and test business logic without having to first deploy it, which
accelerates development.

 Of course, no technology is perfect; JDO has various shortcomings that must be
accommodated when you’re developing an application. In this chapter we describe
the decisions you must make and the workarounds you must use when developing
with JDO. You will learn how to persist domain objects with JDO and implement
domain model repositories using Spring and JDO. This chapter also explains how
to optimize performance in a JDO application by using eager loading and caching.
We will use the Food to Go domain model developed in chapter 3 as an example.

 For more detailed information about JDO, see Java Data Objects [Russell 2003].

5.1 JDO issues and limitations

JDO is one of those technologies that has never received a huge amount of atten-
tion and hype. Although it was the first standard for Java transparent persistence,
it has always has been overshadowed by Hibernate. And, to make matters worse,
politics led the EJB 3 expert group (JSR-220) to define a totally new standard for Java
transparent persistence instead of using JDO. But JDO is an excellent ORM technol-
ogy that has multiple commercial and open source implementations. The trend is
for those implementations to also support EJB 3, and as developers inevitably run
into EJB 3’s limitations (see chapter 10), it’s likely they will find their way to JDO.

 JDO provides a flexible ORM mechanism that makes it straightforward to per-
sist a typical domain model. It supports all of the ORM features I described in
chapter 4, including relationships, embedded value objects, and inheritance. You
rarely need to make significant changes to your domain model in order to persist
it unless, of course, you are working with a legacy schema that has some quirky
features (such as denormalized columns). Making a domain model persistent is
usually only a matter of writing the XML metadata that defines how it maps to the
database schema and perhaps adding ID fields to classes.

 You must, however, decide which kind of JDO object identity to use for each of
the classes in the domain model. In addition, you need to work around a limita-
tion of how interfaces are mapped to the database.

JDO issues and limitations 151
5.1.1 Configuring JDO object identity

An object’s persistent identity identifies it in the database. One important deci-
sion you must make when persisting a domain model with JDO is what kind of
object identity to use for each class. JDO provides three different kinds:

■ Application identity—Persistent identity is managed by the application and is
stored in an object’s field or fields.

■ Datastore identity—Persistent identity is managed by the database and is not
stored in an object’s field.

■ Nondurable identity—Objects have a unique identity in memory but not in
the database.

Nondurable identity is intended for specialized situations such as log files whose
table does not have a primary key. Because it isn’t appropriate for most databases
applications, I will not spend more time discussing it. See the JDO specification
for more information about nondurable identity.

 For each class in your application, you must decide whether to use datastore
identity or application identity. You can use a different type of identity for each
class in the domain model. The only constraint is that all classes in an inheritance
hierarchy must use the same type of identity.

 Let’s look at how application identity and datastore identity work and their
benefits and drawbacks.

Application identity
With application identity, an object’s persistent identity consists of the values of
one or more of the object’s fields. These primary key field or fields are mapped to
the primary key column or columns of the class’s table. An object’s persistent
identity is generated by either the application or the JDO implementation, which
is usually the simplest approach.

 Here is an example of how to use application identity with the PendingOrder
class:

class PendingOrder {
 private int id;

 public int getId() { return id; }
}

<class name="PendingOrder"
 identity-type="application">
 <field name="id"

152 CHAPTER 5

Persisting a domain model with JDO 2.0
 primary-key="true" value-strategy="native" />
…
</class>

This example shows part of the PendingOrder class and an excerpt of its XML
metadata. To use application identity with the PendingOrder class we must add
an ID field to store the primary key. It usually makes sense to also define a getter
so that the rest of the application can access the ID. This example configures the
JDO identity of the PendingOrder class using the following attributes:

■ The identity-type="application" attribute specifies that you want to
use application identity.

■ The primary-key="true" attribute specifies that the PendingOrder.id
field will store the primary key.

■ The value-strategy="native" attribute tells the JDO implementation to
pick the most suitable identifier generation strategy based on the underly-
ing database.

When the application calls PersistenceManager.makePersistent() to save a
newly created PendingOrder object, the JDO implementation will generate the
primary key using one of a variety of key generation mechanisms, including data-
base sequences and auto-increment columns, and store it in the ID field.

 The application can also assign values to the primary key field(s) before calling
PersistenceManager.makePersistent(). This can be useful when you’re map-
ping a domain model to a legacy schema that uses a natural primary key instead of
a surrogate primary key. If necessary, either the application can implement its
own key-generation mechanism or it can call JDO to generate a primary key value.

 A class that uses application identity must have an object ID class, which
defines fields corresponding to the names of the class’s primary key fields. An
application loads an existing object with a particular primary key by passing an
instance of the object ID class that contains the primary key to a method, such as
getObjectById(). If a class has a single primary key field, which is termed single
field identity, then the application uses one of the built-in single field identity pri-
mary key classes. However, if the class has multiple primary key fields, then the
application defines a custom object ID class.

 Here is an example of how an application would retrieve a PendingOrder with
an ID of 555 when using application identity:

String idString = "555";
IntIdentity objectId = new IntIdentity(PendingOrder.class, idString);
PendingOrder p = (PendingOrder)pm.getObjectById(objectId);

JDO issues and limitations 153
This example first constructs an instance of the IntIdentity class, which is a
built-in JDO single field identity class, and then calls getObjectById(), which
returns PendingOrder.

 An important benefit of application identity is that the application can easily
access an object’s persistent identity because it is stored in the object. This benefit
is especially important in web applications, which store object identifiers between
requests in the HttpSession or the browser by embedding them in cookies,
URLs, or hidden form fields. For example, the Food to Go application stores the
identity of a PendingOrder in the HttpSession and embeds restaurant IDs in
URLs on the page that displays the list of available restaurants. Because the object
identifier is stored in the object, the presentation tier can get the object identifi-
ers by calling a getter on the detached object returned by the business tier.

 Another benefit of application identity is that the object’s identity is almost
always a simple value such as an integer or a short string. This makes it straightfor-
ward to embed the object identifier in a URL or hidden field. In comparison,
when using datastore identity the string form of an object identifier is too long to
embed in a URL.

 Application identity is also useful in applications that use a mixture of JDO and
JDBC/iBATIS code. Because the JDO identity is the database primary key, you can
write JDO and JDBC/iBATIS code that exchanges primary keys. For example, you can
write JDBC/iBATIS code that executes a query and gets back some primary keys and
then uses JDO APIs to retrieve objects. Conversely, you can pass the persistent iden-
tity of a JDO object to JDBC/iBATIS code, which then executes a stored procedure.

 The main drawback of using application identity is that because a primary key
usually has no meaning in the domain model, you must add a primary key field to
each class that uses application identity. Typically, however, the benefits of using
application identity outweigh the drawback of having to make some minor
changes to the domain model. If an application needs to access the persistent
identity of an object in its class, you should use application identity. On the other
hand, if you cannot add a primary key field to a class because you do not have
access to its source code, then you must use datastore identity.

Datastore identity
The other JDO identity mechanism is datastore identity, in which an object’s per-
sistent identity is managed entirely by the JDO implementation. The O/R mapping
for a class specifies the primary key column(s) but does not map them to any of the
class’s fields. Instead, the persistent identity of any in-memory JDO objects is main-
tained by PersistenceManager. The JDO implementation generates a persistent

154 CHAPTER 5

Persisting a domain model with JDO 2.0
identity using a variety of mechanisms, including database sequences and auto-
increment columns, but does not store the identity in the object.

 Here is an example of using datastore identity with the PendingOrder class:

<class name="PendingOrder" identity-type="datastore" >
 <datastore-identity strategy="native"
 column="PENDING_ORDER_ID"/>
…
</class>

Because we are using datastore identity, we do not add a primary key field to the
PendingOrder class. This example configures the JDO identity of the Pending-
Order class as follows:

■ The identity-type="datastore" attribute specifies that the Pending-
Order class uses datastore identity. Note, however, that because datastore is
the default value of this attribute (if no field is flagged with primary-
key="true" within this class mapping), this can be omitted.

■ The <datastore-identity> element configures the datastore identity. The
column="PENDING_ORDER_ID" attribute specifies that PENDING_ORDER_ID
is the primary key column. The strategy="native" attribute tells the JDO
implementation to use the most appropriate primary key generation mech-
anism for the underlying database.

As you can see, the primary key column is not mapped to a field in the object. An
application must call JDOHelper.getObjectId(object) to get the identity of an
object. This method returns an instance of an implementation-specific object ID
class. The application can convert an object ID to a string by calling toString().
It could then, for example, store that string ID in the HttpSession or store it in
the browser in a cookie, or hidden field, or as a URL parameter.

 Later on, the application can convert a string obtained in this way back to an
object ID by calling PersistenceManager.newObjectIdInstance(). Here is an
example of how an application would retrieve a PendingOrder with a particular
ID when using datastore identity:

HttpServletRequest request = …;
String idString = request.getParameter("pendingOrderId");
Object objectId = pm.newObjectIdInstance(PendingOrder.class,
 idString);
PendingOrder p = (PendingOrder)pm.getObjectById(objectId);

The newObjectIdInstance() method returns an instance of an object ID class,
which is then passed to getObjectId(). Note that, unlike this code snippet, a

JDO issues and limitations 155
real application would get pendingOrderId from the HttpServletRequest and
pass it to the business tier rather than calling the JDO APIs directly.

 The main benefit of JDO datastore identity is that you do not have to add a pri-
mary key field to a class. This simplifies the domain model and enables you to per-
sist classes that don’t have a primary key field. It works well when the application
never needs to access an object’s persistent identity.

 Datastore identity makes it difficult for the application to access and manipulate
an object’s persistent identity. The first problem is that the application must call
JDOHelper.getObjectId(object) to get the object identifier, which clutters the
code with calls to JDO. This makes the presentation tier more complicated because
it would have to call this method to get the identity of a detached object instead of
simply asking the object. It also breaks encapsulation because the presentation tier
needs to know that the business tier uses JDO. You could avoid this problem by hav-
ing the business tier call getObjectId() and return a DTO containing the object
and its ID to the presentation tier, but that requires extra DTO classes.

 Another problem with datastore identity is that the JDO object ID string is too
long to be embedded within a web page. The ID string is usually the fully qualified
class name concatenated with the primary key. If the application embedded these
values in URLs, the result would be ugly, hard-to-read URLs.

 The third problem with datastore identity is that the persistent identity is dif-
ferent than the database primary key, which makes it very difficult to write JDO
and JDBC/iBATIS code that works together. In order to convert between a primary
key and a datastore identity, you would have to write code that relied on the ven-
dor-specific format of the JDO object ID string.

 Using datastore identity is certainly worthwhile because you don’t have to add
an ID field to your domain objects. However, because of its drawbacks you should
only use it for objects whose persistent identity is never accessed by the applica-
tion. Examples of classes in the Food to Go domain model that can use datastore
identity are PendingOrderLineItem, MenuItem, and TimeRange because their
primary keys are never used. For other classes you should use application identity
and add primary key fields.

 Adding primary key fields is only one of the changes you must make to your
domain model. You might also need to make some changes when persisting class
hierarchies.

5.1.2 Persisting interfaces

Persisting a class hierarchy is generally straightforward because JDO supports each
of the mapping schemes described in chapter 4. A class can be mapped to its

156 CHAPTER 5

Persisting a domain model with JDO 2.0
superclass’s table or to its subclasses’ tables, or it can have its own table. However,
one tricky problem is mapping interfaces such as Coupon. As figure 5.1 shows, the
Coupon interface is implemented by the FreeShippingCoupon and Percentage-
DiscountCoupon classes.

 We need to map the Coupon interface and its implementation classes to the COU-
PON table and map the many-to-one relationships Order-Coupon and Pending-
Order-Coupon to foreign keys in the PLACED_ORDER and PENDING_ORDER tables.
Unfortunately, JDO does not allow this to be done directly by mapping an interface

<<interface>>
Coupon

code
minimum

FreeShipping
Coupon

code
minimum
percentage

Percentage
DiscountCoupon

PendingOrder

Order

PENDING_ORDER_ID <<pk>>
COUPON_ID <<fk>>
...

<<table>>
PENDING_ORDER

ORDER_ID <<pk>>
COUPON_ID <<fk>>
...

<<table>>
ORDER

COUPON_ID <<pk>>
TYPE
CODE <<unique>>
MINIMUM
PER_DISCOUNT

<<table>>
COUPON

Domain Model Database Schema

Figure 5.1 The object/relational mapping for the Coupon classes

JDO issues and limitations 157
to a table in the same way as a class. You must instead change the class hierarchy by
introducing a common superclass that implements the interface and then map it
to the database table.

 For example, to persist the Coupon hierarchy we define an AbstractCoupon-
Impl class that implements the Coupon interface. The concrete Coupon classes
such as FreeShippingCoupon and PercentageDiscountCoupon extend this class:

interface Coupon {..};
class AbstractCouponImpl implements Coupon {…};
class FreeShippingCoupon extends AbstractCouponImpl {…};
class PercentageDiscountCoupon extends AbstractCouponImpl {…};

Once we have made these changes to the domain model, we can then define the
XML metadata for the O/R mapping for the Coupon class hierarchy. Here is an
excerpt of the XML metadata that defines the mapping for the AbstractCoupon-
Impl and FreeShippingCoupon classes:

<class name="AbstractCouponImpl" table="COUPON" >
 <implements name="net.chrisrichardson.foodToGo.domain.Coupon"/>
 <inheritance strategy="new-table">

 bbbb<discriminator strategy="value-map">
 bbb<column name="COUPON_TYPE"/>
 bbbb</discriminator>
bbbb</inheritance>

</class>

<class name="FreeShippingCoupon" persistence-capable-superclass=
➥ "net.chrisrichardson.foodToGo.domain.AbstractCouponImpl">
 <inheritance strategy="superclass-table">
 <discriminator value="FREE_SHIP"/>
 </inheritance>
 <field name="minimum">
 <column name="FREE_SHIP_MINIMUM" allows-null="true"/>
 </field>
</class>

The <implements> element specifies that the AbstractCouponImpl class imple-
ments the Coupon interface. This tells the JDO implementation that any field of
type Coupon is really a reference to an instance of this class or one of its subclasses.

 The <inheritance> element of the AbstractCouponImpl specifies that the
AbstractCouponImpl class has its own table called COUPON and that the
COUPON_TYPE column stores the type of the coupon. The <inheritance> ele-
ment of the FreeShippingCoupon class specifies that the FreeShippingCoupon
is mapped to the COUPON table and that its type code is FREE_SHIP. The map-
ping for PercentageDiscountCoupon would be defined in a similar way.

158 CHAPTER 5

Persisting a domain model with JDO 2.0
 In most cases this is a simple change with only a minimal impact on the
domain model. It is also common to have such an abstract class already in place.
However, it’s a shame that we need to introduce an abstract class because inter-
faces are such a fundamental OO concept.

 Let’s now look at the JDO enhancer tool and its impact on the edit-compile-
debug cycle.

5.1.3 Using the JDO enhancer

Cirque du Soleil’s Mystere at Treasure Island in Las Vegas is my favorite perfor-
mance of all time. The clowns and acrobats perform one breathtaking act after
another. They appear to defy gravity and do things that do not seem humanly pos-
sible. Making it look so effortless requires a tremendous amount of hard work,
countless backstage people, and large amounts of technology.

 Implementing persistence transparently is also a difficult problem. In order to
make it seem effortless, ORM frameworks such as JDO must perform “behind the
scenes” magic to implement features such as lazy loading and change tracking.
Consider, for example, what happens when the application executes the following
code snippet that loads a PendingOrder and navigates to its restaurant:

String idString = "555";
IntIdentity objectId = new IntIdentity(PendingOrder.class, idString);
PendingOrder p = (PendingOrder)pm.getObjectById(objectId);
String restaurantName p = p.getRestaurant().getName()

The JDO implementation must provide the illusion that the Restaurant object is
in memory even when it is loaded lazily. The JDO implementation must also keep
track of changes to objects so that it can update the database.

 There is more than one way to implement transparent persistence, but the
approach taken by most JDO implementations is to use a bytecode enhancer. The
bytecode enhancer is a tool that must be run on the persistent classes and any classes
that directly access their fields. It reads the XML metadata defining the object/
relational mapping and changes the bytecodes in each class file to implement
features such as lazy loading and change tracking. The enhancer, which was man-
datory in JDO 1.0, became optional in JDO 2.0, but it is likely that it will continue
to be the way JDO implementations provide transparent persistence. One of its
valuable benefits is that JDO objects, unlike Hibernate objects, work with
instanceof and can be downcasted.

 One drawback of using the enhancer is that it’s an extra step in the edit-com-
pile-debug cycle. Before the application or its tests can be executed, you must run
the bytecode enhancer, either from within your IDE or by using Ant, on any newly
compiled class files. This can be a problem when you’re working within an IDE

Persisting a domain model class with JDO 159
such as Eclipse, which incrementally compiles files when you save them. Some
JDO vendors provide an Eclipse plug-in that automatically enhances class files, but
some only do so during a full rebuild. As a result, a test will sometimes fail because
it attempts to persist an object whose class has not been enhanced. You must then
manually run the enhancer, which can be frustrating. However, I believe that this
is a small price to pay for objects that support instanceof and downcasting.

 Now that we have looked at some of the issues with using JDO, let’s see how to
use it to persist a domain model class and implement repositories.

5.2 Persisting a domain model class with JDO

You now should have a good understanding of the issues you will encounter and the
decisions you must make when using JDO to persist to a domain model. In this sec-
tion, we’ll use JDO to persist the PendingOrder class. You will see examples of the
tests that you will need to write when using a test-driven approach to persisting your
own domain model with JDO. We’ll describe the minor changes, such as adding an
ID field, that you must make to some classes in order to be able to persist them, and
we’ll show the JDO object/relational mapping for the PendingOrder class.

5.2.1 Writing JDO persistence tests with ORMUnit

The first step in the process of making a class persistent is to write some tests that
verify the correctness of the object/relational mapping and make sure that
instances of the class can be saved, updated, and deleted. Ironically, writing these
tests usually takes longer than making the classes persistent. There are also lots of
details to discuss, so bear with me through this discussion.

 To make writing JDO persistence tests easier, ORMUnit provides three base
classes: JDOMappingTests, JDOSchemaTests, and JDOPersistenceTests. As
figure 5.2 shows, each class extends JUnit TestCase. You use JDOMappingTests
and JDOSchemaTests to write tests for the object/relational mapping and JDO-
PersistenceTests to write tests that create, find, update, and delete persistent
JDO objects.

 JDOMappingTests and JDOSchemaTests delegate to a strategy class that
implements the JDOMappingStrategy interface and uses the vendor-specific APIs
to test the object/relational mapping. JDOPersistenceTests is implemented
using the standard JDO APIs. Let’s first look at these classes and then see how to
use them.

160 CHAPTER 5

Persisting a domain model with JDO 2.0
Overview of JDOMappingTests
JDOMappingTests is a base class for writing tests that verify the ORM defined by
the XML metadata. It defines methods for making assertions about the mapping,
including the following:

■ assertClassMapping(): Verifies that the class is mapped to the specified
table

■ assertApplicationIdentity(): Verifies that the class uses application
identity

■ assertAllFieldsMapped(): Verifies that all the fields of a class are mapped

■ assertIdField(): Verifies that the class’s ID field is mapped to the speci-
fied column

■ assertField(): Verifies that a field is mapped to the specified columns

TestCase

assertClassMapping()
assertApplicationIdentity()
assertAllFieldsMapped()
assertIdField()
assertField()
...

<<abstract>>
JDOMappingTests

assertDatabaseSchema()

<<abstract>>
JDOSchemaTests

doInTransaction()
makePersistent()
getObjectById()
deletePersistent()
...

<<abstract>>
JDOPersistence

Tests

assertClassMapping()
assertApplicationIdentity()
assertAllFieldsMapped()
assertIdField()
assertField()
assertDatabaseSchema()
...

<<interface>>
JDOMappingStrategy

Figure 5.2 The ORMUnit JDO classes

Persisting a domain model class with JDO 161
JDO does not define a standard way to access the O/R mapping, and so each method
delegates to a vendor-specific implementation of JDOMappingTestsStrategy:

public abstract class JDOMappingTests extends TestCase {
 JDOMappingTestsStrategy strategy;

 protected void assertClassMapped(Class type, String table) {
 strategy.assertClassMapping(type, table);
 }

 protected void assertAllFieldsMapped() {
 strategy.assertAllFieldsMapped();
 }
…
}

Let’s now look at JDOSchemaTests, which also delegates to a JDOMappingTests-
Strategy.

Overview of JDOSchemaTests
In addition to testing the O/R mapping, you must verify that the database schema
matches the mapping. JDOSchemaTests is a base class for writing this kind of test.
It defines an assertDatabaseSchema() method, which fails if the mapping refer-
ences tables or columns that are missing from the database schema. Because the
JDO specification does not provide a standard API for doing this, JDOSchemaTests
delegates to vendor-specific implementation of the JDOMappingTestsStrategy:

public class JDOSchemaTests extends TestCase {

 JDOMappingTestsStrategy strategy;

 protected void assertDatabaseSchema() throws Exception {
 strategy.assertDatabaseSchema();
 }
…
}

The assertDatabaseSchema() method simply delegates to the corresponding
method defined by the JDOMappingTestsStrategy. Let’s see how this works.

JPOXMappingStrategy
ORMUnit encapsulates the vendor-specific APIs behind the JDOMappingTests-
Strategy interface. There is a separate implementation of this interface for
each JDO implementation. Listing 5.1 shows an excerpt from the JPOX implemen-
tation of JDOMappingStrategy. The methods that make assertions about the O/R
mapping use JPOX’s metadata classes. They call the JPOX MetaDataParser, which

162 CHAPTER 5

Persisting a domain model with JDO 2.0
is a class that parses XML metadata files, instantiates metadata objects, and stores
them in a MetaDataManager class that acts as a repository of the metadata.
ORMUnit can then use the information contained in the metadata objects to
make assertions about the object/relational mapping. Similarly, the assertData-
baseSchema() method calls SchemaTool.validateSchema(), which is a JPOX
class that reads the XML mapping data and throws an exception if tables or col-
umns are missing from the database schema.

public class JPOXMappingStrategy implements
 JDOMappingTestsStrategy {

 private MetaDataManager mdm;
 private ClassMetaData cmd;
 private final String jdoProperties;
 private final String[] metadataFiles;

 public JPOXMappingStrategy(String jdoProperties,
 String[] metadataFiles) throws Exception {
 this.jdoProperties = jdoProperties;
 this.metadataFiles = metadataFiles;
 mdm = createMetaDataManager();
 }

 private MetaDataManager createMetaDataManager()
 throws Exception {
 mdm = new MetaDataManager();
 for (int i = 0; i < metadataFiles.length; i++) {
 String fileName = metadataFiles[i];
 FileInputStream fis = new FileInputStream(fileName);
 FileMetaData fmdUtil =
 MetaDataParser.parseMetaDataStream(fis,
 true, mdm, fileName);
 fis.close();
 }
 return mdm;
 }

 private void assertClassMapped(Class type, String table) {
 cmd = mdm.getMetaDataForClass(type);
 assertEquals(table, cmd.getTable());
 }

 protected void assertDatabaseSchema()
 throws FileNotFoundException, IOException, Exception {
 FileInputStream fis =

Listing 5.1 JPOXMappingStrategy

B Gets
the JDO metadata

C Verifies the
class mapping

Persisting a domain model class with JDO 163
 new FileInputStream(jdoProperties);
 System.getProperties().load(fis);
 fis.close();
 String[] args = metadataFiles;
 SchemaTool.validateSchemaTables(args, false);
 }

…
}

Let’s take a closer look at this listing:

The constructor calls createMetaDataManager(), which creates a MetaData-
Manager and iterates through the list of JDO metadata files, calling the Meta-
DataParser on each one.

The assertClassMapping() method gets the class’s metadata from the Meta-
DataManager and verifies that it is mapped to the expected table.

The assertDatabaseSchema() method loads the JDO properties file into Sys-
tem.getProperties(). It then calls SchemaTool.validateSchemaTables(),
passing the list of JDO metadata files. SchemaTool.validateSchemaTables()
uses the system properties to open a database connection and verifies that the
database schema matches the JDO metadata files.

Now that we have seen how these test classes work, let’s look at JDOPersistence-
Tests.

Overview of JDOPersistenceTests
ORMUnit also defines the JDOPersistenceTests class, which extends JUnit
TestCase and makes it easier to write tests for persistent objects. It defines
setUp() and tearDown() methods that implement the boilerplate code of a JDO
persistence test such as configuring a PersistenceManagerFactory and open-
ing and closing a PersistenceManager. It also provides convenience methods
for manipulating persistent data and managing transactions, such as:

■ doInTransaction(): Executes the callback method within a JDO transac-
tion and ensures that the same PersistenceManager is used throughout. It
does this using a Spring TransactionTemplate that is configured to use a
JdoTransactionManager.

■ makePersistent(): Saves an object by calling JdoTemplate.makePersis-
tent().

D Verifies the
database schema

B

C

D

164 CHAPTER 5

Persisting a domain model with JDO 2.0
■ getObjectById(): Loads a persistent object by calling JdoTemplate
.getObjectById().

■ deletePersistent(): Deletes a persistent object by calling JdoTemplate
.deletePersistent().

These methods make it easier to write tests for persistent objects. See this book’s
online source code for the details of the class.

5.2.2 Testing persistent JDO objects

Now that you have seen an overview of ORMUnit’s JDO classes, we’ll look at writing
tests for the JDO persistence layer using the testing strategy described in earlier
chapter 4. There are three different sets of tests. The first set of tests verifies we
have correctly implemented the O/R mapping, an excerpt of which is shown in
figure 5.3. These tests verify, for example, that the PendingOrder class is mapped
to the PENDING_ORDER table and that each of its fields is mapped to a column of
that table.

 The second set of tests verifies that the database schema matches the O/R map-
ping. The tests verify that every table and column referenced by the mapping
exists in the database schema. The third set of tests verifies that persistent pend-
ing orders can be saved, queried, updated, and deleted. The next section explains
how to implement these tests for the PendingOrder class.

Verifying the O/R mapping
The first test we must write is one that verifies that the PendingOrder class is
mapped correctly to the database. Here is a simple test for the PendingOrder class:

public class FoodToGoDomainMappingTests extends JDOMappingTests {

 public void testSimple() throws Exception {
 assertClassMapped(PendingOrder.class, "PENDING_ORDER");
 assertAllFieldsMapped();
 }

The test extends the ORMUnit class JDOMappingTests. It calls assertClass-
Mapped() to verify that PendingOrder is mapped to the PENDING_ORDER table
and then calls assertAllFields()to verify that all of PendingOrder’s fields are
mapped to the database.

 This test only verifies that each field is mapped to the database. If you need to
verify that each field is mapped to the correct column, then you can write a more
elaborate test that calls methods such as assertField(). Here’s an example:

Persisting a domain model class with JDO 165
public class FoodToGoDomainMappingTests extends JDOMappingTests {

 public void test() throws Exception {
 assertClassMapped(PendingOrder.class, "PENDING_ORDER");
 assertApplicationIdentity();

 assertIdField("id", "PENDING_ORDER_ID");
 assertField("deliveryTime", "DELIVERY_TIME");
 assertManyToOneField("restaurant", "RESTAURANT_ID");

 assertAllFieldsMapped();
 }

state
deliveryTime

PendingOrder

street1
street2
city
...

Address

delivery address

PendingOrder
LineItem

Line items

PENDING_ORDER_ID <<pk>>
DELIVERY_TIME
DELIVERY_ADDRESS_STREET1
DELIVERY_ADDRESS_CITY
RESTAURANT_ID <<fk>>
...

<<table>>
PENDING_ORDER

PENDING_ORDER_LINE_ITEM_ID <<fk>>
PENDING_ORDER_ID <<fk>>
MENU_ITEM_ID <<fk>>
LINE_ITEM_INDEX
QUANTITY
...

<<table>>
PENDING_ORDER_LINE_ITEM

Restaurant

restaurant

Domain Model Database Schema

RESTAURANT_ID <<pk>>
NAME

...

<<table>>
RESTAURANT

Figure 5.3 Part of the object/relational mapping for the Food to Go domain model

166 CHAPTER 5

Persisting a domain model with JDO 2.0
This test verifies that the PendingOrder class uses application identity and that the
ID field is mapped to the PENDING_ORDER_ID column. It also verifies the restau-
rant field is mapped to a foreign key column called RESTAURANT_ID. Writing this
test can take a while, but it is a lot easier than verifying the contents of the database.

 I often find it useful to first write some very simple tests that verify that the class
is mapped to the right table and that all of its fields are mapped to the database.
This initial step detects many common problems. I then expand the tests over
time to verify the correct mapping for each field.

Verifying that the schema matches the mapping
The second kind of test that you need to write is one that verifies that the database
schema matches the O/R mapping. ORMUnit makes it easy to verify that the data-
base schema matches the O/R mapping:

public class JDOFoodToGoSchemaValidationTests extends
 JDOSchemaTests {

 public void test() throws Exception {
 assertDatabaseSchema();
 }
}

This test calls assertDatabaseSchema(), which we described earlier, to verify
that there are no missing columns. It will catch common mistakes such as defining
the O/R mapping for a new field without adding the corresponding column to
the schema. Because it checks that the database schema matches the O/R map-
ping for all classes, we only need to write it once.

 Now that we have written tests to verify that the O/R mapping and the database
schema, let’s look at writing tests that persist JDO objects.

Verifying that objects can be created, queried, updated, and deleted
The third and final kind of tests is one that verifies that the PendingOrder can be
created, queried, updated, and deleted. A good way to begin is to write a test that
simply saves the PendingOrder in the database and then write more elaborate
tests later. Here is a test for PendingOrder that does just that:

public class JDOPendingOrderPersistenceTests extends
 JDOPersistenceTests {

 public void testPendingOrderSimple() throws Exception {

 doWithTransaction(new TxnCallback() {
 public void execute() throws Exception {
 PendingOrder po = new PendingOrder();

Persisting a domain model class with JDO 167
 makePersistent(po);
 int poId = po.getId();
 }
 });
 }

JDOPendingOrderPersistenceTests extends JDOPersistenceTests, which is
an ORMUnit class. The test instantiates a PendingOrder and saves it in the data-
base by calling makePersistent(), which is defined by JDOPersistenceTests
and calls JdoTemplate.makePersistent().

 A more thorough test would create a PendingOrder, update it, and delete it.
Listing 5.2 shows an example of such a test. This creates a PendingOrder, updates
it in different ways, and then deletes it. Each step of the test is a separate database
transaction that creates, deletes, and updates objects in the database.

public class JDOPendingOrderPersistenceTests extends
 JDOPersistenceTests {

 private String poId;

 private String restaurantId;

 public void testPendingOrder() throws Exception {

 createPendingOrder();

 createRestaurant();

 updateDeliveryInformation();

 updateRestaurant();

 updateQuantities();

 changeQuantities();

 deletePendingOrder();

 }

 private void createPendingOrder() {
 doWithTransaction(new TxnCallback() {
 public void execute() throws Exception {
 PendingOrder po = new PendingOrder();
 makePersistent(po);
 poId = po.getId();

Listing 5.2 JDOPendingOrderPersistenceTests

B Creates and saves
PendingOrder

168 CHAPTER 5

Persisting a domain model with JDO 2.0
 }
 });
 }
 private void createRestaurant() {
 doWithTransaction(new TxnCallback() {
 public void execute() throws Exception {
 Restaurant restaurant = RestaurantMother
 .makeRestaurant();
 makePersistent(restaurant);
 restaurantId = restaurant.getId();
 }
 });
 }

 private void updateDeliveryInformation() {
 doWithTransaction(new TxnCallback() {
 public void execute() throws Exception {
 PendingOrder po = loadPendingOrder();
 assertNull(po.getDeliveryAddress());
 Date deliveryTime = RestaurantMother
 .makeDeliveryTime();
 Address deliveryAddress = new Address("1 High St", null,
 "Oakland", "CA", "94619");
 JDORestaurantRepositoryImpl restaurantRepository =
 new JDORestaurantRepositoryImpl(getJdoTemplate());
 int updateDeliveryInfoResult = po
 .updateDeliveryInfo(restaurantRepository,
 deliveryAddress, deliveryTime, true);
 assertEquals(PlaceOrderStatusCodes.OK,
 updateDeliveryInfoResult);
 }
 });
 }

 private PendingOrder loadPendingOrder() {
 return (PendingOrder) getObjectById(
 PendingOrder.class, poId);
 }

 private void updateRestaurant() {
 doWithTransaction(new TxnCallback() {
 public void execute() throws Exception {
 PendingOrder po = loadPendingOrder();
 Restaurant restaurant = (Restaurant) getObjectById(
 Restaurant.class, restaurantId);
 boolean updateRestaurantResult = po
 .updateRestaurant(restaurant);
 assertTrue(updateRestaurantResult);
 }
 });
 }

C Creates and
saves a Restaurant

D Updates
PendingOrder’s
delivery info

E Updates
PendingOrder’s restaurant

Persisting a domain model class with JDO 169
 private void updateQuantities() {

 doWithTransaction(new TxnCallback() {
 public void execute() throws Exception {
 PendingOrder po = loadPendingOrder();
 po.updateQuantities(new int[] { 1, 2 });
 }
 });
 }

 private void changeQuantities() {
 doWithTransaction(new TxnCallback() {
 public void execute() throws Exception {
 PendingOrder po = loadPendingOrder();
 po.updateQuantities(new int[] { 0, 2 });
 }
 });
 }

 private void deletePendingOrder() {
 doWithTransaction(new TxnCallback() {
 public void execute() throws Exception {
 PendingOrder po = loadPendingOrder();
 deletePersistent(po);
 }

 });
 }

}

The testPendingOrder() method calls several helper methods that implement
the steps of the test. Let’s look at the details:

The createPendingOrder() method creates a PendingOrder and persists it.

The createRestaurant() method creates and saves a Restaurant, which is
used by the test.

The updateDeliveryInformation() method loads PendingOrder and calls
PendingOrder.updateDeliveryInfo().

The updateRestaurant() method loads PendingOrder and the Restaurant
that was created earlier and calls PendingOrder.updateRestaurant(), which
creates an association from the PendingOrder to the Restaurant.

The updateQuantities() method calls PendingOrder.updateQuantities(),
which creates line items.

F Updates
PendingOrder’s line items

G Changes
PendingOrder’s line items

H Deletes
PendingOrder

B

C

D

E

F

170 CHAPTER 5

Persisting a domain model with JDO 2.0
The changeQuantities() method changes the line item quantities, which
deletes the existing line items and creates new ones.

The deletePendingOrder() method deletes the PendingOrder, which should
also delete the line items.

This test corresponds to one possible scenario in the lifetime of a pending order.
In order to thoroughly test the PendingOrder class, we would also need to write
other tests, such as one that calls updatePaymentInfo() with a Coupon. Although
developing these tests can be time consuming, they are an important part of the
test suite for JDO persistence layer. As with the O/R mapping tests, you can start
off by writing a simple test that creates and saves a PendingOrder and then add
more comprehensive tests over time. Let’s look at what we have to do in order to
get these tests to pass.

5.2.3 Making a class persistent

Developing the persistence tests is, in some ways, the most challenging and time-
consuming part of making a class persistent. Getting them to pass is comparatively
easy. To do that, we must make some changes to the PendingOrder class and
write the JDO XML metadata files that define its object/relational mapping.

Modifying the class
We need to modify the PendingOrder in order to be able to persist it. Because we
have decided to use application identity, we have to add an ID field, which stores
the primary key, and a getter that returns its value. Here are the changes:

public class PendingOrder {
 private int id;

 private int getId() {
 return id;
 }
…

The rest of the class is unchanged.

Defining the O/R mapping
The final step in persisting the PendingOrder class is writing the JDO XML meta-
data that maps the PendingOrder class to the database schema and specifies vari-
ous aspects of the class, including the JDO identity type and how to generate the
primary key. Some JDO implementations provide GUI tools that help with this, but
it is fairly easy to do by hand.

H

G

Persisting a domain model class with JDO 171
 The JDO XML metadata specifies the persistence information and ORM meta-
data. The persistence information describes the persistent classes, each class’s JDO
identity type, and which fields are persistent. The ORM metadata describes how
the domain model maps to the database schema. You can put the persistence
information and ORM metadata together in a .jdo file or you can put the mapping
in a separate .orm file. Most of the time you will want to put the metadata in a sin-
gle file, but separate files are useful if, for example, you want to map a domain
model to different database schemas.

 The JDO XML metadata can be for either a single class or for one or more pack-
ages. If it is for a single class, the name of the name of the XML metadata file is <class-
Name>.jdo. If the metadata is for one or more packages, it is called package.jdo.
JDO defines a set of search rules for locating metadata files. You can, for example,
put a package.jdo file in a class path directory corresponding to the package name,
such as net/chrisrichardson/foodToGo/domain, or in a class path directory cor-
responding to a partial package name, such as net/chrisrichardson/foodToGo.

 Listing 5.3 shows an excerpt of the JDO metadata for the PendingOrder class.

<jdo>
…
 <class name="PendingOrder"
 table="PENDING_ORDER"
 identity-type="application" >

 <field name="id" primary-key="true"
 value-strategy="native">
 <column name="PENDING_ORDER_ID"/>
 </field>

 <field name="deliveryTime">
 <column name="DELIVERY_TIME" jdbc-type="TIMESTAMP"/>
 </field>

 <field name="deliveryAddress"
 default-fetch-group="true">
 <embedded
 null-indicator-column="DELIVERY_STREET1">
 <field name="street1">
 <column name="DELIVERY_STREET1"/>
 </field>
 <field name="street2">
 <column name="DELIVERY_STREET2"/>
 </field>

Listing 5.3 XML metadata for the PendingOrder class

B Configures
class mapping

C Configures id as
primary key field

D Maps
deliveryTime
field

E Maps
deliveryAddress field

172 CHAPTER 5

Persisting a domain model with JDO 2.0
 <field name="city">
 <column name="DELIVERY_CITY"/>
 </field>
 <field name="state">
 <column name="DELIVERY_STATE"/>
 </field>
 <field name="zip">
 <column name="DELIVERY_ZIP"/>
 </field>
 </embedded>
 </field>

 <field name="restaurant">
 <column name="RESTAURANT_ID"
 target="RESTAURANT_ID"/>
 </field>

 <field name="lineItems">
 <collection
 element-type="PendingOrderLineItem"
 dependent-element="true"/>
 <element>
 <column name="PENDING_ORDER_ID"
 allows-null="false"/>
 </element>
 <order column="LINE_ITEM_INDEX"/>
 </field>
…
 </class>
…
</jdo>

Let’s look at the details of the mapping:

This maps the PendingOrder class to the PENDING_ORDER table and specifies
that it uses application identity.

This section specifies that id is the primary key field and that primary keys should
be generated using a database-approach mechanism.

This maps simple fields such as deliveryTime to columns of the
PENDING_ORDER table.

This section maps the fields of deliveryAddress to the columns of the
PENDING_ORDER table. The null-indicator-column specifies that if the
DELIVERY_STREET1 column is null, then deliveryAddress is null.

E Maps
deliveryAddress field

F Maps
restaurant field

G Maps
lineItems field

B

C

D

E

Implementing the JDO repositories 173
This maps the restaurant field to the RESTAURANT_ID column, which is a foreign
key column that references the RESTAURANT table.

The lineItems field is defined to be a collection of PendingOrderLineItem
objects. The dependent-element="true" attribute specifies that line items
should be deleted when removed from the line items collection or when the
pending order is deleted. The <element> element specifies that the lineItems
field is mapped to the PENDING_ORDER_ID foreign key column of Pending-
OrderLineItem’s table (i.e., PENDING_ORDER_LINE_ITEM). The allows-

null="false" attribute specifies that the column cannot be null. The <order>
element specifies that the position of the line item in the list is stored in the
LINE_ITEM_INDEX column of the PENDING_ORDER_LINE_ITEM table.

The metadata for the other domain classes is similar. Once you have written the
JDO XML metadata for a domain model, you must run the JDO implementation’s
bytecode enhancer to modify the class files. Once you do, the application will be
able to persist instances of those classes in the database and the tests we wrote ear-
lier will pass.

 At this point, you know how to persist domain objects; the next step is to write
the repositories.

5.3 Implementing the JDO repositories

One part of persisting a domain model with JDO is defining the O/R mapping and
writing the tests to verify that it works. We must also implement the repositories,
which define methods for creating, finding, and deleting persistent domain
objects and are the only domain model classes that call the JDO APIs to manipu-
late persistent objects.

 If you are using test-driven development, you begin the process of implement-
ing a repository by writing some tests for the repository. We saw in chapter 4 that
there are two kinds of tests that you need to write for a repository. First are mock
object tests that verify that the repository calls the JDO and Spring APIs correctly.
Mock objects are an effective way to directly test the functionality implemented by
the repository independently of the persistence framework and the database. Sec-
ond, you need database tests for the queries that are executed by the repository.
These tests execute the queries against a database populated with test data and
verify that they return the correct results. Once you have written the tests, you
then write the code for the repository and get the tests to pass.

 This section shows how to do this for the RestaurantRepository.find-
AvailableRestaurants() method, which finds the restaurants that serve a given

G

F

174 CHAPTER 5

Persisting a domain model with JDO 2.0
delivery address and time using the Spring and JDO APIs. First, we write some
mock object tests for RestaurantRepository. After that we write the method
and get the mock objects test to pass. Finally, we write some database tests for the
JDO query that is executed by RestaurantRepository to find the restaurants.

5.3.1 Writing a mock object test for findRestaurants()

The mock objects test for findRestaurants() uses mock objects to verify that it
calls the Spring and JDO APIs correctly. But to know which objects to mock we
must decide how findRestaurants() executes the query. It can use either a
named query or a query that is embedded in the code. In this particular case it
makes sense to use a named query because, as you will see shortly, the query is too
large to embed inside Java code. It would be spread over several lines of code,
which would be messy.

Executing a named query using a callback class
A repository could execute a query by calling the JDO APIs directly, but it is usually
much easier to use the JdoTemplate class. It implements boilerplate code that
you would otherwise have to write and provides a number of convenience meth-
ods. However, at the time of this writing one limitation of the JdoTemplate class
is that it lacks a convenience method for executing named queries with parame-
ters. We must instead use it to execute a JdoCallback that creates and executes
the named query. Even though this requires more code than calling a conve-
nience method, it is still simpler than using the JDO APIs directly because the
JdoTemplate takes care of opening and closing the PersistenceManager and
mapping exceptions thrown by JDO to Spring data access exceptions.

 The most straightforward and commonly used way to use a JdoTemplate to
execute a JdoCallback is to use an anonymous class. But one big problem with
using an anonymous callback is that it’s impossible for a mock JdoTemplate to
verify that execute() is called with the correct JdoCallback object. A better
approach is to use a named JdoCallback class that implements the equals()
method because we would then be able to configure a mock JdoTemplate.

 To implement the findRestaurants() method, we can define a JdoCall-
back class called ExecuteNamedQueryWithMapCallback whose constructor takes
as parameters the name of the query and the Map containing the query’s parame-
ters. This class, shown in listing 5.4, creates the named query and returns the
result of executing it by calling Query.executeWithMap(). It has an equals()
method that returns true if the query names and parameters are the same in the
two objects.

Implementing the JDO repositories 175
public class ExecuteNamedQueryWithMapCallback implements
 JdoCallback {

 private String queryName;

 private Map parameters;

 private Class type;

 public ExecuteNamedQueryWithMapCallback
bbbbbbbbbbbb➥ (String queryName,
 Map parameters,
 Class type) {
 this.queryName = queryName;
 this.parameters = parameters;
 this.type = type;
 }

 public boolean equals(Object other) {
 if (other == null)
 return false;
 if (!(other instanceof ExecuteNamedQueryWithMapCallback))
 return false;

 ExecuteNamedQueryWithMapCallback x =
 (ExecuteNamedQueryWithMapCallback) other;

 return queryName.equals(x.queryName)
 && parameters.equals(x.parameters)
 && type.equals(x.type);
 }

 public int hashCode() {
 return queryName.hashCode()
 ^ parameters.hashCode()
 ^ type.hashCode();
 }

 public Object doInJdo(PersistenceManager pm)
 throws JDOException {
 Query query = pm.newNamedQuery(type, queryName);
 return query.executeWithMap(parameters);
 }
}

Let’s take a closer look at ExecuteNamedQueryWithMapCallback:

Listing 5.4 ExecuteNamedQueryWithMapCallback

B Creates ExecuteNamedQuery
WithMapCallback

C Tests for
equality

D Executes the
named query

176 CHAPTER 5

Persisting a domain model with JDO 2.0
The constructor takes the class, the query name, and the query parameters as
parameters and stores them in fields.

The equals() method returns true if the type, the query name, and the query
parameters of the two objects are the same.

The doInJdo() method, which is invoked by the JdoTemplate with a Persis-
tenceManager, creates the named query and executes it.

Although this seems like a lot of code to do something so simple, it’s important to
remember that this class is reusable and it makes the repository easier to test. Let’s
see how.

Writing the mock object test
Once we have defined the ExecuteNamedQueryWithMapCallback class, we can
then write a mock object test for findRestaurants(). This test configures a mock
JdoTemplate to expect its execute() method to be called with an instance of the
class that contains the expected query name and query parameters. Listing 5.5
shows the mock object test for findRestaurants() that does this.

public class JDORestaurantRepositoryImplTests extends
 MockObjectTestCase {

 private Mock mockJdoTemplate;

 private JDORestaurantRepositoryImpl repository;

 private static final int EXPECTED_MINUTE = 6;

 private static final int EXPECTED_HOUR = 5;

 private static final int EXPECTED_DAY_OF_WEEK = 3;

 Address deliveryAddress;

 Date deliveryTime;

 public void setUp() {
 mockJdoTemplate =
 new Mock(JdoTemplate.class);
 repository = new JDORestaurantRepositoryImpl(
 (JdoTemplate) mockJdoTemplate.proxy(), null);
 restaurant = new Restaurant();
 deliveryTime = makeDeliveryTime(EXPECTED_DAY_OF_WEEK,
 EXPECTED_HOUR, EXPECTED_MINUTE);

Listing 5.5 JDORestaurantRepositoryImplTests

C

D

B Creates mock objects
and test data

B

Implementing the JDO repositories 177
 deliveryAddress = new Address("1 somewhere", null,
 "Oakland", "CA", "94619");
 }

 private Date makeDeliveryTime(int dayOfWeek, int hour,
 int minute) {
 Calendar c = Calendar.getInstance();
 c.set(Calendar.DAY_OF_WEEK, dayOfWeek);
 c.set(Calendar.HOUR_OF_DAY, hour);
 c.set(Calendar.MINUTE, minute);
 return c.getTime();
 }

 public void testFindAvailableRestaurants() {
 List expectedRestaurants = Collections
 .singletonList(new Restaurant());

 ExecuteNamedQueryWithMapCallback
 expectedCallback =
 makeExpectedCallback();

 mockJdoTemplate.expects(once())
 .method("execute")
 .with(eq(expectedCallback))
 .will(returnValue(
bbbbbbbbbbbbbbb➥ expectedRestaurants));

 List foundRestaurants = repository
 .findAvailableRestaurants(deliveryAddress,
 deliveryTime);
 assertEquals(expectedRestaurants, foundRestaurants);
 }

 private ExecuteNamedQueryWithMapCallback makeExpectedCallback() {
 String queryName = "Restaurant.findAvailableRestaurants";
 Map parameters = new HashMap();
 parameters.put("zipCode", deliveryAddress.getZip());
 parameters.put("day", new Integer(EXPECTED_DAY_OF_WEEK));
 parameters.put("hour", new Integer(EXPECTED_HOUR));
 parameters.put("minute", new Integer(EXPECTED_MINUTE));

 Class type = Restaurant.class;

 ExecuteNamedQueryWithMapCallback expectedCallback
 = new ExecuteNamedQueryWithMapCallback(type,
 queryName,
 parameters);
 return expectedCallback;
 }
}

C Creates result
of query

D Creates expected
callback

E Configures
expectations

F Calls repository
and checks result

178 CHAPTER 5

Persisting a domain model with JDO 2.0
Let’s look at the details:

The setup() method creates the mock JdoTemplate, the JdoRestaurant-
Repository, and the delivery information that is used for the test.

The testFindAvailableRestaurants() method creates the list of restaurants
that is returned by ExecuteNamedQueryWithMapCallback and that should be
returned by the repository.

This calls makeExpectedCallback() to create the ExecuteNamedQueryWith-
MapCallback that should be passed to the JdoTemplate. The makeExpected-
Callback() method creates an ExecuteNamedQueryWithMapCallback that
specifies the Restaurant class, the Restaurant.findAvailableRestaurants
query, and the query’s parameters, which consist of the delivery information’s ZIP
code, day of the week, hour, and minute.

The testFindAvailableRestaurants() method configures the mock JdoTem-
plate to expect its execute() method to be called with an ExecuteNamedQuery-
WithMapCallback and to return the list of restaurants.

This calls findAvailableRestaurants() and verifies that it returns the expected
list of restaurants.

5.3.2 Implementing JDORestaurantRepositoryImpl

The next step is to write the JDORestaurantRepositoryImpl class and the
findRestaurants() method. This will be easy since we had to decide how it
worked in order to write the test. Listing 5.6 shows the JDORestaurantReposi-
tory class, which uses the JdoTemplate class to execute an instance of the Exe-
cuteNamedQueryWithMapCallback class.

public class JDORestaurantRepositoryImpl extends JdoDaoSupport
 implements RestaurantRepository {

 public JDORestaurantRepositoryImpl
 (JdoTemplate jdoTemplate) {
 setJdoTemplate(jdoTemplate);
 }

 public List findAvailableRestaurants(Address deliveryAddress,
 Date deliveryTime) {
 Calendar c = Calendar.getInstance();
 c.setTime(deliveryTime);
 int dayOfWeek =

B

C

D

E

F

Listing 5.6 The JDORestaurantRepository class

B Creates
JDORestaurantRepositoryImpl

C Creates
parameters

Implementing the JDO repositories 179
 c.get(Calendar.DAY_OF_WEEK);
 int hour = c.get(Calendar.HOUR_OF_DAY);
 int minute = c.get(Calendar.MINUTE);

 Map parameters = new HashMap();
 parameters.put("zipCode",
 deliveryAddress.getZip());
 parameters.put("day",
 new Integer(dayOfWeek));
 parameters.put("hour",
 new Integer(hour));
 parameters.put("minute",
 new Integer(minute));

 ExecuteNamedQueryWithMapCallback
 callback =
 new ExecuteNamedQueryWithMapCallback(
 Restaurant.class,
 "Restaurant.findAvailableRestaurants", parameters);

 return (List)
 getJdoTemplate().execute(callback);
 }

JDORestaurantRepositoryImpl implements RestaurantRepository and
extends JdoDaoSupport, which is a Spring-provided support class that includes
convenience methods such as setJdoTemplate() and getJdoTemplate(). Let’s
look at the details:

The constructor takes a JdoTemplate as a parameter and calls setJdoTem-
plate().

The findRestaurants() method uses a Calendar to get the day of week, hour,
and minute from the delivery time and then creates a Map containing the query
parameters.

The findRestaurants() method instantiates an ExecuteNamedQueryWithMap-
Callback object, passing the name of the query, the restaurant class, and the
query parameters to its constructor.

It calls JdoTemplate.execute() to execute the ExecuteNamedQueryWithMap-
Callback object.

As you can see, implementing a repository using JDO is quite easy. The only com-
plication was the requirement to define a named JdoCallback class in order to
make the findAvailableRestaurants() method easier to test.

C Creates
parameters

D Creates
callback

E Executes
callback

B

C

D

E

180 CHAPTER 5

Persisting a domain model with JDO 2.0
5.3.3 Writing the query that finds the restaurants

So far we have implemented the findAvailableRestaurants() method and
written a test that verifies that it executes the named query correctly. The final
step is to implement the JDO query that it uses to finds the available restaurants.
Because it is a named query, it is defined in the XML metadata for the Restau-
rant class:

<class name="Restaurant" table="RESTAURANT" …>
…
 <query name="Restaurant.findAvailableRestaurants">
 <![CDATA[
 select
 where serviceArea.contains(zipCode)
 && timeRanges.contains(tr)
 && (tr.dayOfWeek == day
 && (tr.openHour < hour
 || (tr.openHour == hour
 && tr.openMinute <= minute))
 && (tr.closeHour > hour
 || (tr.closeHour == hour
 && tr.closeMinute > minute))
)
 variables TimeRange tr
 parameters String zipCode, int day, int hour, int minute
]]>
 </query>
</class>

This query takes a ZIP code, a day of the week, an hour, and a minute as parame-
ters. It finds all restaurants whose serviceArea field contains the specified ZIP
code and whose timeRanges field contains a TimeRange for the specified day of
the week, hour, and minute.

5.3.4 Writing tests for a query

Unless a query is extremely simple, it is usually worthwhile to write tests for it.
Let’s look at one way to test the query that finds the available restaurants. This
query’s where clause contains several relational operators, and so it is important
to test with various combinations of test data. Each of the tests for this query, some
of which are shown in listing 5.7, initializes the database with test data, invokes the
query with a particular set of arguments, and verifies that it returns the expected
results. The test class extends the ORMUnit class JDOPersistenceTests and uses
the RestaurantMother helper class to construct the test restaurant.

Implementing the JDO repositories 181
public class JDORestaurantRepositoryQueryTests extends
 JDOPersistenceTests {

 private JDORestaurantRepositoryImpl repository;

 private String restaurantId;

 protected void setUp() throws Exception {
 super.setUp();
 repository = new JDORestaurantRepositoryImpl(
 getJdoTemplate());
 initializeDatabase();
 }

 private void initializeDatabase() {
 doWithTransaction(new TxnCallback() {

 public void execute() throws Throwable {
 deletePersistent(Order.class);
 deletePersistent(PendingOrder.class);
 deletePersistent(Restaurant.class);
 Restaurant r = RestaurantMother
 .makeRestaurant(RestaurantTestData.GOOD_ZIP_CODE);
 makePersistent(r);
 restaurantId = r.getId();
 }
 });
 }

 private void findAvailableRestaurants(final int dayOfWeek,
 final int hour, final int minute, final String zipCode,
 final boolean expectRestaurants) throws Exception {

 doWithTransaction(new TxnCallback() {

 public void execute() throws Throwable {
 Date deliveryTime = makeDeliveryTime(dayOfWeek,
 hour, minute);
 Address deliveryAddress = new Address(
 "1 Good Street", null, "Good Town", "CA",
 zipCode);

 Collection availableRestaurants = repository
 .findAvailableRestaurants(deliveryAddress,
 deliveryTime);
 if (expectRestaurants)
 assertFalse(availableRestaurants.isEmpty());
 else
 assertTrue(availableRestaurants.isEmpty());

Listing 5.7 JDORestaurantRepositoryQueryTests

B

C

182 CHAPTER 5

Persisting a domain model with JDO 2.0
 }
 });

 public void testFindAvailableRestaurants()
 throws Exception {
 findAvailableRestaurants(Calendar.TUESDAY, 19, 0,
 RestaurantTestData.GOOD_ZIP_CODE, true);
 }

 public void testFindAvailableRestaurants_closedDay()
 throws Exception {
 findAvailableRestaurants(Calendar.MONDAY, 19, 0,
 RestaurantTestData.GOOD_ZIP_CODE, false);
 }

 public void testFindAvailableRestaurants_badZipCode()
 throws Exception {
 findAvailableRestaurants(Calendar.MONDAY, 19, 0,
 RestaurantTestData.BAD_ZIP_CODE, false);
 }

}

Here’s a closer look at JDORestaurantRepositoryQueryTests:

The setUp() method initializes the database by deleting existing restaurants and
inserting a test restaurant.

The findAvailableRestaurants() method, which is a helper method called by
the tests, executes the query with the parameters and verifies the result.

The testFindAvailableRestaurants_good() method executes the query with
delivery information that is served by a restaurant.

The testFindAvailableRestaurants_closedDay() method executes the
query with delivery information for a day that is not served by any restaurants.

The testFindAvailableRestaurants_badZipCode() method executes the
query with a ZIP code that is not served by any restaurants.

This class would also define tests for various boundary conditions such as a deliv-
ery time that is equal to the opening time of a restaurant and a delivery time that
is equal to its closing time.

 Although these tests can be time consuming to write and execute, they are
extremely useful because they verify that the query behaves correctly.

D

E

F

B

C

D

E

F

JDO performance tuning 183
 Once you’ve written the XML metadata, made the necessary changes to the
domain model classes, implemented the repositories, and written the tests, you
will have a persistent domain model. You will then be able to integrate it with the
presentation tier to create a working application. However, before your applica-
tion goes into production it is quite likely that you will have to improve perfor-
mance by using eager loading and caching.

5.4 JDO performance tuning

A wise software developer once said, “First, make it work, then make it work right,
and finally make it work fast.” The tests that we have written should ensure that it
works right, and so now we turn our attention to how to make it work fast. We saw
in chapter 4 that lazy loading, eager loading, process-level caching, and query
caching are important mechanisms for improving the performance of an applica-
tion that uses an ORM framework. They reduce the load on the database, which is
often the bottleneck in an enterprise application.

 It is important to achieve the correct balance between lazy and eager loading.
Lazy loading minimizes the number of objects the application loads from the
database by only loading objects that are actually accessed. Eager loading mini-
mizes the number of trips to the database by retrieving multiple related objects at
a time. By using the right combination of eager and lazy loading, you can often
improve the performance of an application.

 Process-level caching is another way to improve the performance of an applica-
tion. It reduces the number of database accesses by caching frequently accessed
objects in memory. Before accessing the database, the JDO implementation first
checks in the process-level cache. Using a process-level cache can often improve
the performance of an application significantly. In this example application, it
makes sense to cache the restaurant-related classes—Restaurant, MenuItem, and
TimeRanges—because they are frequently accessed but rarely updated. An appli-
cation can use a combination of eager loading and process-level caching. How-
ever, relationships from objects that are not cached to those that are should not
be eagerly loaded because that would bypass the cache.

 Query caching is an extension of the process-level caching mechanism. The
query cache stores the IDs of the objects returned by a query. When the JDO
implementation is called by the application to execute in the query, it looks in the
query cache before accessing the database. If the query is in the cache, the JDO
implementation then retrieves the objects from the process-level cache. For some
queries in some applications, this can improve performance significantly.

184 CHAPTER 5

Persisting a domain model with JDO 2.0
 In this section you will learn how to use eager loading, process-level caching,
and query caching in a JDO application. We describe how to use JDO fetch groups
to configure eager loading. You will learn how to use AOP to separate the code
that configures the eager loading from the code the core business logic. We dis-
cuss how to use process-level caching and query caching in one popular JDO
implementation, and use the Place Order use case as an example.

5.4.1 Using fetch groups to optimize object loading

JDO, like most other ORM frameworks, uses lazy loading by default. You configure
eager loading by using either JDO fetch groups or an implementation-specific
mechanism. A JDO fetch group, which is associated with a class, describes the
structure of an object graph whose root object is an instance of that class. It speci-
fies the objects and their fields that should be loaded when the application exe-
cutes a JDO query or loads an instance. There are two ways to eagerly load a
related object using fetch groups. The simpler of the approaches is to add the
field that references the object to what is called the default fetch group. The other
approach is to define a custom fetch group. Let’s look at each strategy.

Using default fetch groups
Every persistent JDO class has a default fetch group, which contains the fields that
the JDO implementation loads by default. By default, this group contains the class’s
primitive fields, the date fields, string fields, and fields whose type is a number
wrapper class. As a result, the JDO implementation will only load those fields that
contain simple values and any referenced objects will be loaded lazily. However, an
easy way to eagerly load an object is to add the field that references it to the default
fetch group.

 For example, the application always traverses the PendingOrder-Restaurant
and PendingOrderLineItem-MenuItem relationships in the Food to Go Domain
model. It makes sense, therefore, to add the corresponding fields to the default
fetch group. The default fetch group is configured in the XML metadata. For
example, this is how you would add the PendingOrder.restaurant field to the
default fetch group:

<class name="PendingOrder" identity-type="application">
 …
 <field name="restaurant" default-fetch-group="true">
 …
</class>

JDO performance tuning 185
The default-fetch-group="true" attribute specifies that the restaurant field
is a member of the PendingOrder’s default fetch group. A JDO implementation
typically loads a PendingOrder by executing a SELECT table that does a join
between the PENDING_ORDER and RESTAURANT tables. The PendingOrderLi-
neItem-MenuItem is configured in a similar fashion. Once we have configured the
fetch groups, the JDO implementation will load the related objects using a SQL join.

 Adding a field to the default fetch group is a useful way to improve perfor-
mance if the relationship is always traversed when the referencing object is
loaded. However, if different requests traverse different relationships, then the
default fetch group mechanism isn’t all that useful. We must instead use custom
fetch groups to dynamically control eager loading.

Using custom fetch groups to optimize object loading
A custom fetch group is defined in the XML metadata for a class and specifies one
or more of the class’s fields and possibly one or more other fetch groups. An
application tells JDO to eagerly load the relationships specified by a custom fetch
group by activating the fetch group programmatically. For example, when han-
dling the update payment information request the application needs to eagerly
load the pending order’s lineItems and their menu items in addition to its res-
taurants. It can do this using the following custom fetch group:

<class name="PendingOrder" identity-type="application">
 …
 <fetch-group name="PendingOrder.withLineItems">
 <field name="lineItems"/>
 </fetch-group>
 …
</class>

Note that because the PendingOrder.restaurant and PendingOrderLine-
Item.menuItem fields already belong to the default fetch group, they do not
need to be specified in the custom fetch group.

 Once you have defined a custom fetch group, you can use it to eagerly load
those objects by writing code to add it to the PersistenceManager’s active fetch
groups, which control which objects and fields are loaded. By default, the
“default” fetch group is the only active fetch group, which is how fields that
belong to the default fetch group are loaded. However, if there is an active fetch
group that contains a field that is a reference to another object, the JDO imple-
mentation will eagerly load that object in addition to any objects referenced by
fields in the default fetch group.

186 CHAPTER 5

Persisting a domain model with JDO 2.0
 To configure the active fetch groups, you use a FetchPlan, which is accessed
by calling PersistenceManager.getFetchPlan(). You can, for example, call
FetchPlan.addGroup() to add a fetch group to the active fetch groups for the
PersistenceManager:

PersistenceManager pm = …;
FetchPlan fp = pm.getFetchPlan();
fp.addGroup("PendingOrder.withLineItems");

In this example, adding the fetch group we defined earlier to the set of active
fetch groups causes the PersistenceManager to load the pending order, its res-
taurant, its line items, and their menu items. Fetch groups are mostly a hint to the
JDO implementation when loading objects, but it is likely that a good JDO imple-
mentation would honor them.

Optimizing object loading in Kodo JDO
One of the challenges with using a new standard is that the implementations
sometimes lag behind. At the time of this writing, I didn’t have access to a JDO
implementation that supported the JDO 2 custom fetch group mechanism; there-
fore, I needed to use a vendor-specific mechanism to dynamically configure eager
loading. But even though it is nonstandard, it illustrates the kinds of things you
will be able to do with JDO 2 fetch groups once they are supported.

 Kodo JDO 3.3 provides a couple of ways to dynamically configuring eager load-
ing. It provides custom fetch groups that are similar to those supplied by JDO 2
but less flexible because a field can only belong to either the default fetch group
or to at most one custom fetch group. As a result, you cannot define multiple
fetch groups that have fields in common, which makes them quite difficult to use.

 Fortunately, Kodo JDO also has a per-field fetch configuration mechanism that
lets you explicitly specify the fields that should be loaded eagerly. This mechanism
is more flexible than its custom fetch groups because you can specify an arbitrary
set of fields. To use this feature, you must downcast the PersistenceManager to a
KodoPersistenceManager and get its FetchConfiguration, which is similar to
the FetchPlan class discussed earlier. This class provides methods for specifying
the fields that should be loaded by its PersistenceManager. Here is an example
of how to arrange for the PendingOrder’s line items and restaurant to be eagerly
loaded:

PersistenceManager pm = …;
KodoPersistenceManager kpm = (KodoPersistenceManager)pm;
FetchConfiguration fc = pm.getFetchConfiguration();
fc.addField("net.chrisrichardson.foodToGo.PendingOrder.lineItems");
fc.addField("net.chrisrichardson.foodToGo.PendingOrder.restaurant");

JDO performance tuning 187
The call to FetchConfiguration.addField() tells Kodo JDO to eagerly load the
PendingOrder’s line items and restaurant.

 To dynamically configure object loading, the application must call FetchCon-
figuration.addField() with the required fields prior to calling Persistence-
Manager.getObjectById(). For the Place Order use case, one option is for the
PendingOrderRepository to define multiple versions of the findPending-
Order() method that calls FetchConfiguration.addField() with the appropri-
ate fields. For example, the findPendingOrderWithLineItemsAndRestaurant()
method, which is called by PlaceOrderService.updatePaymentInformation(),
would add the PendingOrder.lineItems and PendingOrder.restaurant fields
to the active fields using code similar to that shown earlier.

 However, the trouble with this approach is that it requires changing the
domain model. Although some objects are loaded because they are required by
the business logic, other objects are loaded because they are needed by the UI. It
is undesirable to couple the core business logic to the UI design because we might
have to repeatedly change the business logic to reflect changes to the UI. Further-
more, it also makes the domain model less reusable. To avoid these problems, we
have to separate the business logic from the code that configures object loading.
Let’s see how to do this.

Using AOP to dynamically configure eager loading
We can use a Spring AOP interceptor to separate the business logic from the code
that configures object loading. The interceptor, which intercepts requests to the
business logic, adds the fields that must be eagerly loaded to the FetchConfigu-
ration. Listing 5.8 shows the KodoFetchGroupInterceptor, which is a Spring
AOP interceptor that configures the FetchConfiguration based on the method
that is invoked. When the interceptor is invoked, it uses the method name to
determine which fields to add to the FetchConfiguration. The set of fields to
use for a given method invocation is specified by the map that is passed to the
interceptor’s constructor. The key of each map entry is the name of a service
method, and the value is a list of fully qualified field names.

public class KodoFetchGroupInterceptor
 implements MethodInterceptor {
 private PersistenceManagerFactory pmf;

 private Map fetchGroupConfig;

Listing 5.8 KodoFetchGroupInterceptor

188 CHAPTER 5

Persisting a domain model with JDO 2.0
 public KodoFetchGroupInterceptor(PersistenceManagerFactory pmf,
 Map fetchGroupConfig) {
 this.pmf = pmf;
 this.fetchGroupConfig = fetchGroupConfig;
 }

 public Object invoke(MethodInvocation methodInvocation)
 throws Throwable {
 PersistenceManager pm = PersistenceManagerFactoryUtils
 .getPersistenceManager(pmf, false);
 KodoPersistenceManager kpm = (KodoPersistenceManager) pm;

 FetchConfiguration fetchConfiguration = kpm
 .getFetchConfiguration();
 String[] originalFetchGroups = fetchConfiguration
 .getFetchGroups();
 String[] originalFields = fetchConfiguration.getFields();

 try {
 configureFetchGroups(methodInvocation.getMethod()
 .getName(), kpm, fetchConfiguration);
 return methodInvocation.proceed();
 } finally {
 fetchConfiguration.clearFetchGroups();
 fetchConfiguration.addFetchGroups(originalFetchGroups);
 fetchConfiguration.clearFields();
 fetchConfiguration.addFields(originalFields);

 PersistenceManagerFactoryUtils
 .closePersistenceManagerIfNecessary(pm, pmf);
 }
 }

 private void configureFetchGroups(String methodName,
 KodoPersistenceManager kpm,
 FetchConfiguration fetchConfiguration) {
 List fieldNames = getFieldNames(methodName);
 if (fieldNames != null) {
 for (Iterator it = fieldNames.iterator(); it
 .hasNext();) {
 String fieldName = (String) it.next();
 fetchConfiguration.addField(fieldName);
 }
 }
 }

 private List getFieldNames(String methodName) {
 List fieldNames = (List) fetchGroupConfig
 .get(methodName);
 if (fieldNames == null)
 fieldNames = (List) fetchGroupConfig.get("*");

B

C

D

E

F

G

H

I

J

JDO performance tuning 189
 return fieldNames;
 }
}

Unlike other examples you’ve seen, the KodoJDOFetchGroupInterceptor does
not use a JdoTemplate to execute a JdoCallback because MethodInvoca-
tion.proceed() is declared to throw a Throwable whereas a JdoCallback can
only throw a JDOException. Let’s look at the details:

Its constructor takes a PersistenceManagerFactory and a Map as parameters
and saves them.

The invoke() method gets the PersistenceManager bound to the thread;

saves the original active fields; calls configureFetchGroups() to configure
them; calls proceed() to invoke the original method; restores the Fetch-
Configuration to its original state; and closes the PersistenceManager if
necessary.

The configureFetchGroups() method gets the list of field names.

If the list is non-null, it iterates through calling FetchConfiguration.add-
Field().

Listing 5.9 show the Spring bean definitions that configure the KodoFetch-
GroupInterceptor and applies it to the PlaceOrderService.

<beans>
…
 <bean id="FetchGroupInterceptor"
 class="net.chrisrichardson.foodToGo.util.jdo.kdo.fetchGroups.
bbbbbbbbb➥ KodoFetchGroupInterceptor">
 <constructor-arg ref="myPersistenceManagerFactory" />
 <constructor-arg>
 <map>
 <entry key="updateQuantities">
 <list>
 <value>
 net.chrisrichardson.foodToGo.domain.
bbbbbbbbbbbbbbbb➥ PendingOrder.restaurant
 </value>
 <value>
 net.chrisrichardson.foodToGo.domain.
bbbbbbbbbbbbbbbb➥ PendingOrder.lineItems

Listing 5.9 Configuring the KodoFetchGroupInterceptor

B

C

D E
F G

H

I

J

190 CHAPTER 5

Persisting a domain model with JDO 2.0
 </value>
 <value>
 net.chrisrichardson.foodToGo.domain.
bbbbbbbbbbbbbbbb➥ Restaurant.menuItems
 </value>
 </list>
 </entry>
 <entry key="updatePaymentInformation">
 <list>
 <value>
 net.chrisrichardson.foodToGo.domain.
bbbbbbbbbbbbbbbb➥ PendingOrder.restaurant
 </value>
 <value>
 net.chrisrichardson.foodToGo.domain.
bbbbbbbbbbbbbbbb➥ PendingOrder.lineItems
 </value>
 </list>
 </entry>
 </map>
 </constructor-arg>
 </bean>

 <bean id="PlaceOrderFieldProxyCreator"
 class="org.springframework.aop.framework.autoproxy.
bbbbbbbbbbbbbbbbbbbbbb ➥ BeanNameAutoProxyCreator">
 <property name="beanNames">
 <list>
 <idref bean="PlaceOrderService" />
 </list>
 </property>
 <property name="interceptorNames">
 <list>
 <idref bean="FetchGroupInterceptor" />
 </list>
 </property>
 </bean>
 …

</beans>

The FetchGroupInterceptor bean creates and configures a KodoFetch-
GroupInterceptor. One parameter is the PersistenceManagerFactory, which
is defined elsewhere, and the other is a map that specifies the fields to eagerly
load when a method is invoked. The map is constructed by the <map> element
constructs. Each <entry> element constructs a map entry with the method as a
key and a list of field names as the value, and each <list> element constructs a

JDO performance tuning 191
list of field names. PlaceOrderFieldProxyCreator applies the KodoFetch-
GroupInterceptor to the PlaceOrderService.

 Each time the PlaceOrderService is called, the KodoFetchGroupIntercep-
tor will add the specified fields to the FetchConfiguration, which will cause
them to be eagerly loaded. If the UI design changes and requires different fields
to be loaded, you will just need to edit the Spring bean definition and not modify
any code.

 You will be able to configure JDO 2.0 fetch groups using a similar AOP-based
approach. Instead of configuring individual fields, the interceptor will use the
JDO 2.0 APIs to configure the active fetch groups. Eager loading is only one way to
improve performance. Another option is to use process-level caching.

5.4.2 Using a PersistenceManagerFactory-level cache

By default, a JDO implementation only caches objects in PersistenceManager. It
looks in the PersistenceManager cache before loading an object from the data-
base. In addition to ensuring that there is at most one in-memory representation
of a persistent object, the cache improves performance by reducing database
accesses. However, the PersistenceManager cache is flushed when a transaction
ends, which means that the next time the application accesses an object the JDO
implementation has to load it from the database. In a JDO application, you can
often improve performance significantly by caching frequently accessed but rarely
modified objects in the PersistenceManagerFactory-level cache, which is JDO’s
way of providing process-level caching.

Overview of the PersistenceManagerFactory-level cache
The JDO implementation looks in the PersistenceManagerFactory-level cache
after checking the PersistenceManager cache but before accessing the database.
This cache is not flushed when a transaction commits and consequently contains
objects accessed by multiple transactions. Enabling the PersistenceManager-
Factory-level cache can often increase performance significantly by reducing the
number of database accesses.

 The JDO specification does not define the detailed behavior of the Persis-
tenceManagerFactory-level cache or how to configure it. You must typically con-
figure the cache by using a combination of vendor-specific Persistence-
ManagerFactory properties and XML metadata. For example, the Kodo JDO
PersistenceManagerFactory cache is enabled using the following Persis-
tenceManagerFactory properties:

192 CHAPTER 5

Persisting a domain model with JDO 2.0
kodo.DataCache: true
kodo.RemoteCommitProvider: sjvm

The kodo.DataCache property enables the PersistenceManagerFactory-level
cache and also specifies the cache configuration, such as its size and how long
cached items should remain in the cache. You can also configure multiple caches
with different configurations. The kodo.RemoteCommitProvider property speci-
fies how to broadcast change invalidation messages to other cluster members
when objects are modified. A value of sjvm is used in a single JVM configuration.

 When Kodo’s PersistenceManagerFactory-level cache is enabled, all classes
will be cached by default. You can configure caching behavior for individual
classes, however, using metadata extensions. The data-cache extension specifies
whether instances of this class should be cached and which cache to use. The
data-cache-timeout extension specifies how long an instance should be
cached; a timeout of -1 means indefinitely. Here is an example:

<class name="Restaurant" identity-type="application">
 …
 <extension vendor-name="kodo"
 key="data-cache-timeout"
 value="3600000"/>
 …
</class>

This metadata specifies that the Restaurant class should be cached for at most
one hour.

 Kodo JDO, like other JDO implementation, also provides methods for evicting
objects from the PersistenceManagerFactory-level cache. An application
removes an single object from the cache by calling DataCache.remove() and
removes a collection of objects by calling DataCache.removeAll(). An applica-
tion often needs to evict stale objects from the cache if it updates the database by
using, for example, iBATIS or JDBC.

Using the PersistenceManagerFactory-level cache
To cache only the restaurant-related classes—Restaurant, MenuItem, and Time-
Range—in the Kodo JDO PersistenceManagerFactory-level cache, we would
enable the cache and disable caching for the other domain model classes, such as
PendingOrder and PendingOrderLineItem. We would also have to turn off any
eager loading of the restaurant-related classes to ensure that the Persistence-
ManagerFactory-level cache is used. Kodo would then just load the pending
order and its line items using a single SQL statement. The JDO implementation
retrieves the restaurant and menu item objects referenced by the pending order

Summary 193
and its line items from the PersistenceManagerFactory-level cache when the
application navigates to them.

5.4.3 Using a query cache

The PersistenceManagerFactory-level cache optimizes the loading of individ-
ual objects but, by default, queries still go to the database. To improve query per-
formance, some JDO implementations also provide a query cache that caches the
results of a query and avoids the need to execute a SQL SELECT statement. The
query cache is used in conjunction with the PersistenceManagerFactory-level
cache. It caches the IDs of the objects returned by the query, which are then used
to find the objects in the PersistenceManagerFactory-level cache. A query is
dropped from the cache when an instance of a class that is accessed by the query
is modified.

Overview of the query cache
The details of the query cache depend on the JDO implementation. For example,
the Kodo JDO query cache is enabled by default if the data cache is enabled but can
be disabled by setting the kodo.QueryCache PersistenceManagerFactory prop-
erty to false. If the query cache is enabled, it can be turned off for a Persistence-
Manager by calling KodoPersistenceManager.setQueryCacheEnabled(false)
and turned off for a query by calling KodoQuery.setQueryCacheEnabled-
(false). You also need to remember that the query cache is ignored in some sit-
uations. For example, the query cache is not used during pessimistic transactions
(see chapter 12 for a description of pessimistic transactions) because Kodo JDO
must go to the database to lock the rows.

Using the query cache for the Place Order use case
For the Place Order use case, the queries that could be cached are those executed
by RestaurantRepository.isRestaurantAvailable() and findAvailable-
Restaurants(). However, there are potentially many combinations of values for
each query’s parameters – zipCode, and deliveryTime—so it is unclear whether
caching them would be advantageous. We would have to analyze the running
application to determine whether there is any benefit.

5.5 Summary

JDO 2.0 is a standard ORM framework that is comparable in power to Hibernate. It
provides mostly transparent persistence for POJOs, and a typical domain model can

194 CHAPTER 5

Persisting a domain model with JDO 2.0
be mapped to the database without significant changes. In the example domain
model, we just needed to insert an abstract class into an inheritance hierarchy.

 One important decision you need to make when persisting a class is whether to
use application identity or datastore identity. With application identity, an object’s
persistent identity corresponds to the database primary key and is stored in its pri-
mary key field or fields, which makes it readily accessible. With datastore identity,
an object’s persistent identity is managed by the JDO implementation and is not
stored in the object. You don’t need to add primary key fields to the domain
model, but it makes accessing the primary key of an object more difficult.

 JDO provides a straightforward API for manipulating persistent data, which is
made even easier to use by Spring’s JdoTemplate class. Many repository methods
can call a JdoTemplate method and never need to call the JDO APIs directly.
Those methods that do need to call the JDO APIs use the JdoTemplate to exe-
cute a JdoCallback. To enable testing with mock objects, the repository meth-
ods must used a named JdoCallback class instead of the commonly used
anonymous JdoCallback.

 JDO provides several features for improving the performance of an applica-
tion. You can use fetch groups to configure eager loading. A fetch group is speci-
fied in the XML metadata and defines the structure of an object graph to eagerly
load. A key feature of fetch groups is that they enable you to use a Spring AOP
interceptor to dynamically configure eagerly loading for each request without
having to change the code. JDO also provides a PersistanceManagerFactory-
level cache, which caches objects across transaction boundaries. In addition, some
JDO implementations provide a query cache, which caches the results of a query.
It is important to remember, however, that because JDO is a standard, the quality
and features of each specific implementation determine performance.

 Now that you have seen how to persist a POJO domain model with JDO, the
next chapter examines how to do the same thing with Hibernate.

Persisting a domain model
with Hibernate 3
This chapter covers
■ Persisting objects with Hibernate
■ Testing a Hibernate persistence layer
■ Using Spring’s Hibernate support classes
■ Tuning a Hibernate application
195

196 CHAPTER 6

Persisting a domain model with Hibernate 3
Hibernate is an extremely popular open source, ORM framework. It provides
mostly transparent persistence for POJOs as well as a rich set of ORM options.
Hibernate can run inside an application server or in a two-tier environment
(which accelerates development by enabling Hibernate-based business logic to be
developed and tested outside of the application server). However, like every tech-
nology Hibernate has its strengths and weaknesses. In this chapter, you will learn
how to leverage Hibernate’s strengths and how to work around its weaknesses.

 We describe how use Hibernate 3.0 to persist a domain model using the Food
to Go domain model from chapter 3 as an example. You will learn how Hibernate
implements each of the main ORM concepts described in chapter 4, including its
mapping features and API. We describe how to map the domain model to a data-
base schema and the changes that we must make to accommodate Hibernate’s
limitations. You will learn how to implement domain model repositories with the
Hibernate API and the Spring framework. We also explain how to effectively test a
Hibernate-based persistence layer.

 For more detailed information about Hibernate, see Hibernate in Action [Bauer
2005].

6.1 Hibernate ORM issues

Hibernate is the de facto standard for Java transparent persistence. This is
because it’s free, it’s well documented, and it works. You can download it and
install it without having to make a case for spending thousands of dollars in devel-
opment licenses. The excellent documentation means that getting started is rela-
tively painless. Also, other than a few quirks here and there, it works as advertised.
As a result, Hibernate is widely used.

 Because Hibernate provides a powerful and flexible ORM mechanism, persist-
ing a typical domain model is mostly straightforward. However, there are still some
Hibernate-specific issues to resolve. In this section and the next one, we describe
those issues and explore the different options. Let’s first look at some of the deci-
sions you must make when defining the O/R mapping for a domain model.

6.1.1 Fields or properties

A persistence framework such as Hibernate must read and write the object’s state
when it transfers the object to and from the database. An object’s state consists of
the values of its fields, but sometimes it is useful to encapsulate the state with
Java Bean-style properties. Hibernate, unlike JDO, can map either fields or
Java Bean-style properties to the database schema. If the O/R mapping is defined in

Hibernate ORM issues 197
terms of fields, Hibernate accesses the fields directly when loading and saving
objects. Alternatively, if the mapping is defined using properties, Hibernate calls get-
ters and setters. Table 6.1 lists the pros and cons of each option.

Hibernate’s O/R mapping uses the <property> element to map either a field or a
property to a column, which can be confusing at first. For example, you can map
the price property of a MenuItem using this:

class MenuMenu {
…
 public double getPrice() {…};
 private void setPrice(double newPrice) {…};
…
}

<class name="MenuItem" …>
…
 <property name="price" column="PRICE"/>
…
</class>

Hibernate calls accessors when it loads and saves a MenuItem. It calls the get-
Price() getter when it saves a MenuItem and will call the setPrice() setter when it
loads a MenuItem. Note that accessors can be private if necessary.

 Alternatively, you can map the price field using this:

class MenuMenu {
 private double price;
…
}

<class name="MenuItem" …>
…
 <property name=" price" column="PRICE" access="field"/>
…
</class>

Table 6.1 Pros and cons of mapping fields and properties

Pros Cons

Properties Encapsulation
Accessors can transform values
It’s the default

Must define accessors (but they
bbcan be private)

Fields No need to define accessors—
bbespecially setters

Less encapsulation
Not the default, so that mapping
bbbecomes more verbose

198 CHAPTER 6

Persisting a domain model with Hibernate 3
The access attribute specifies that the price is a field rather than a property.
Hibernate will read and write the price field, which can be private, directly with-
out calling an accessor.

 You can avoid having to specify an access attribute for every property by defin-
ing the default in the <hibernate-mapping> element:

<hibernate-mapping
 default-access="field">
 …
<class name="MenuItem" …>
…
 <property name="price" column="PRICE"/>
…
</class>

Because the default-access attribute has the value of field, the <property> ele-
ment refers to the field rather than the property.

 Mapping properties is useful in some situations, such as when an object needs
to initialize some nonpersistent fields or transform the persisted value. However,
except in those rare situations I would recommend mapping fields. Since Hiber-
nate’s purpose is to store the state of an object in the database schema, I have
found no benefit in hiding that state from Hibernate with accessors. Moreover,
many objects have getters for their state but do not define setters. For example,
the PendingOrder class has a getDeliveryAddress() method but does not define a
setDeliveryAddress() method. Its client must instead call updateDeliveryInfo(),
which validates its arguments. There is little value in defining a private
setDeliveryAddress() method for Hibernate’s exclusive use. Even though it is
generally considered to be bad practice to access an object’s fields directly, this is a
situation where it is perfectly acceptable.

6.1.2 Hibernate entities and components

When we’re using Hibernate, an important part of defining the O/R mapping for
a domain model is to determine which classes are entities and which are compo-
nents. This distinction is important because Hibernate maps entities and compo-
nents to the database in slightly different ways. A Hibernate entity is a standalone
object whose lifecycle is independent of the lifecycle of any other object that ref-
erences it. This is similar to but not quite the same as the domain model entity
concept you learned about in chapter 3.

 In contrast, a Hibernate component is an object that is part of some other par-
ent object and that is persisted and deleted with its parent. A component is also

Hibernate ORM issues 199
deleted when it is no longer associated with its parent object. Hibernate compo-
nents are important for two reasons:

■ You can use a component to map an object to its parent object’s table.

■ You can use a collection of components to efficiently persist a unidirec-
tional one-to-many relationship that is mapped using a foreign key.

To determine whether a domain model class should be a Hibernate entity or a
component, you must carefully analyze the relationships that it has with other
classes. A class that is associated with only one other class and whose lifecycle is
dependent on that other class is a good candidate to be a component. On the
other hand, classes that have an independent existence or that are referenced by
multiple classes should be mapped as entities. Figure 6.1 is a UML class diagram
that shows some of the classes and relationships in the Food to Go domain model.

 In this example, domain model classes such as PendingOrder, Restaurant, and
Order are clearly Hibernate entities. They are objects whose lifetime is indepen-
dent of any other objects. On the other hand, classes such as Address and
PaymentInformation are components because they are simple value objects with

PendingOrder

PendingOrder
LineItem

Restaurant

MenuItem

Address
Payment

Information

Hibernate
Components

Hibernate
Entities

Hibernate Entity
or Component

Hibernate Entity

Figure 6.1
The Hibernate entities and
components in part of the
Food to Go domain model

200 CHAPTER 6

Persisting a domain model with Hibernate 3
no distinct identity and stored in their parent object’s table. The lifetime of each
PendingOrderLineItem, OrderLineItem, and MenuItem object is dependent on its
parent. PendingOrderLineItem and OrderLineItem could be either entities or com-
ponents, but MenuItem needs to be an entity because it is referenced by Pending-
OrderLineItem, OrderLineItem, and Restaurant.

 Later in this section, we’ll describe these choices in more detail when we look at
how to define the O/R mapping for the various relationships in the domain model.

6.1.3 Configuring object identity

A persistent object has a persistent identity, which is the primary key of the corre-
sponding row the database table. The persistent identity usually consists of a sin-
gle value, which maps to a primary key column. A class can also have a composite
key consisting of multiple properties that map to multiple table columns, but we
don’t describe this feature here. In the Hibernate O/R mapping for a class, you
can specify various aspects of its persistent identity, including the primary key col-
umn, whether it is maintained in the object, and whether the application or
Hibernate generates the persistent identity. Let’s look at an example.

An example of how to configure the identity
A class’s persistent identity is configured using the <id> and <generator> elements
in the mapping document:

<class name="PendingOrder" table="PENDING_ORDER">
 <id name="id" column="PENDING_ORDER_ID">
 <generator class="native"/>
 </id>
…
</class>

In this example the <id> and <generator> elements specify the following informa-
tion about the persistent identity of the PendingOrder class:

■ The PENDING_ORDER_ID column is the primary key for the PENDING_ORDER
table.

■ The PendingOrder.id field stores the persistent identity.

■ Hibernate should generate persistent identifiers using a database-specific
mechanism such as an Oracle sequence or an identity column.

Now that you have seen an example, let’s look at the decisions you must make
when configuring Hibernate object identity.

Hibernate ORM issues 201
Generating persistent identifiers
First you must pick an identifier-generation strategy. Hibernate, like JDO, can gen-
erate the persistent identifier for your objects, or it can allow your application to
generate them. Application-generated persistent identifiers are useful when the
application needs precise control over the object’s primary key. For example, one
common reason to use application-assigned identifiers is if you are working with a
legacy schema that uses a natural key as the primary key. In this situation, the appli-
cation must assign a primary key value to an object before calling Session.save().

 Most of the time, however, it is a lot more convenient to let Hibernate generate
an object’s persistent identity, especially because it is good practice to use surro-
gate instead of natural keys. You also have less code to write. Hibernate provides
several identifier-generation strategies, including Oracle sequences, identity col-
umns, and Unique Universal Identifier (UUID) generation algorithms. The best
approach is to configure Hibernate to use the native generation strategy, as illus-
trated by the earlier example. Hibernate picks the most appropriate strategy for
the database. For example, Hibernate uses sequences for an Oracle database and
identity columns for an HSQLDB database. Native generation is extremely useful
because it enables the O/R mapping to be portable across databases. You can, for
example, test against HSQLDB and then deploy on Oracle without changing the
O/R mapping document.

Using identifier properties
In addition to deciding how to generate identifiers, you must determine whether
you need to define an identifier property in which to store them. The class must
have an identifier property if it uses an application-generated primary key because
it must be able to assign a value to the property before saving the object. An iden-
tifier property is optional if Hibernate is responsible for generating identifiers. If
an object has an identifier property, Hibernate assigns the generated identifier to
it when the object is saved.

 As we described in chapter 5 when comparing JDO datastore identity and
application identity, the main benefit of identifier properties is that they make an
object’s persistent identity readily available to the rest of the application. They are
extremely useful when the business tier returns domain objects to the presenta-
tion tier, which typically embeds object identifiers in URLs or hidden fields or
stores them as part of the session state. If an object has an identifier property, the
presentation tier can easily get an object’s identifier. However, if an object does
not have an identifier property, either the business tier or presentation tier must

202 CHAPTER 6

Persisting a domain model with Hibernate 3
get an object’s identity by calling Session.getIdentity() with the object as a
parameter, which is much less convenient.

 The downside of using identifier properties is that because they are usually sur-
rogate keys that are not part of the domain model. For example, none of the
classes in the Food to Go domain model developed in chapter 3 has an identifier
property. Consequently, if you want to use identifier properties you must add
them to the domain model classes. However, this is usually worthwhile for those
objects whose identity is accessed by the application.

Mapping one-to-many relationships
An important part of defining the O/R mapping for a domain model is mapping
relationships to the database schema. Hibernate’s rich ORM features makes this
mostly straightforward. However, one tricky area is defining the mapping for uni-
directional one-to-many relationships such as PendingOrder-PendingOrderLineItem
and Restaurant-MenuItem. In the domain model, these relationships are imple-
mented by a collection of child objects in the parent object, and in the database
they are represented by a foreign key from the child table to the parent table.
Because of the way Hibernate handles this kind of relationship, you must some-
times choose between using suboptimal SQL or changing the domain model and
database schema. Hibernate provides two ways to define the mapping for this kind
of relationship. Let’s look at the details of each approach and its respective benefits
and drawbacks.

Using entity collections
One approach is to map the one-to-many relationship as a collection of Hibernate
entities. For example, we saw in section 6.1.1 that the MenuItem class must be mapped
as a Hibernate entity because it is referenced by multiple classes. This means that
we must map the Restaurant-MenuItems relationship as an entity collection:

<class name="Restaurant" table="RESTAURANT">
…
 <list name="menuItems"

 bbbbbbbbcascade="all,delete-orphan">
 bbbbb<key column="RESTAURANT_ID" not-null="true"/>
 bbbbb<index column="MENU_ITEM_INDEX"/>
 bbbbb<one-to-many class="MenuItem">

 </list>
</class>

<class name="MenuItem" table="MENU_ITEM">
…
 <property name="name" column="NAME"/>

Hibernate ORM issues 203
 <property name="price" column="PRICE"/>
</class>

This mapping specifies that the menuItems field is an ordered list of MenuItem enti-
ties. The <key> element specifies that the foreign key in MENU_ITEM is
RESTAURANT_ID, and the not-null attribute tells Hibernate that the foreign key
cannot be null. It is usually important to specify not-null="true" because other-
wise Hibernate initially will not supply a value for a foreign key such as the
RESTAURANT_ID column, which typically has a NOT NULL constraint. The <index>
element specifies that the column that Hibernate uses to store the position of
MenuItem in the list be called MENU_ITEM_INDEX.

 The cascade="all,delete-orphan" attribute specifies that menu items should
be saved or deleted at the same time as the restaurant and that a menu item
should be deleted when it is removed from the menuItems collection. This means,
for example, that the application can construct a restaurant and its menu items
and then save them by calling save() on the restaurant. Hibernate will automati-
cally save the menu items as well. Later, in section 6.1.5, we describe the cascade
attribute in more detail.

 Here is the definition of the MENU_ITEM table:

CREATE TABLE MENU_ITEM(
 MENU_ITEM_ID NUMBER(10) NOT NULL,
 RESTAURANT_ID NUMBER(10) NOT NULL,
 MENU_ITEM_INDEX NUMBER(10) NOT NULL,
 NAME VARCHAR(50) NOT NULL,
 PRICE NUMBER(5, 2) NOT NULL,
)

The MENU_ITEM_ID column is the surrogate primary key and the RESTAURANT_ID
column is a foreign key to the RESTAURANT table.

 As you can see, defining the mapping is straightforward. Hibernate will auto-
matically delete a child when either the parent is deleted or the child is removed
from the collection. Furthermore, the child table can be referenced by classes
other than its parent.

 But one drawback of using an entity collection is that Hibernate persists a
newly created child using two SQL statements rather than one:

insert
 into MENU_ITEM (VERSION, NAME, PRICE, RESTAURANT_ID,
 MENU_ITEM_INDEX, MENU_ITEM_ID)
 values (?, ?, ?, ?, ?, ?)

update MENU_ITEM
 set RESTAURANT_ID=?, MENU_ITEM_INDEX=?
 where MENU_ITEM_ID=?

204 CHAPTER 6

Persisting a domain model with Hibernate 3
First, Hibernate executes a SQL INSERT statement that inserts the MenuItem into
the MENU_ITEM table. Then, for no obvious reason, Hibernate executes a SQL
UPDATE statement that sets the MENU_ITEM_INDEX and RESTAURANT_ID foreign keys to
the parent’s row. Luckily, the overhead of the extra statement is insignificant
because the example application rarely creates menu items.

 In most applications, inserts are relatively infrequent when compared to reads,
so it’s unlikely that this quirky behavior will cause a performance problem. But
one workaround is to make the relationship bidirectional and have the child
maintain a reference to the parent and a field that stores its position in the list. In
this example, a MenuItem would maintain a reference to its Restaurant and an
index field. But one problem with using a bidirectional relationship is that the
domain model classes must contain extra code to set the fields in the child object.
Another problem is that bidirectional relationships introduce cyclic dependen-
cies into the design, which degrades maintainability. Also, it might not be possible
to modify a third-party class library to make the association bidirectional.

 Despite these drawbacks, you must use an entity collection if the child is refer-
enced by multiple objects or if you need to use a surrogate key in the child table.
In other situations, however, using a component collection can be a better approach.

Using component collections
Another way to implement a one-to-many relationship is as a component collec-
tion, which avoids the problem of the extra SQL statements. For example, we have
seen how PendingOrderLineItem can be mapped as either a component or an
entity because it is only referenced by a PendingOrder. We could, therefore, map
the PendingOrder-PendingOrderLineItem as a component collection instead of an
entity collection. We do this by using the <composite-element> element within the
<list> element:

<class name="PendingOrder" table="PENDING_ORDER">

<list name="lineItems"
 table="PENDING_ORDER_LINE_ITEM"
 cascade="all">

 <key column="PENDING_ORDER_ID"/>
 <index column="LINE_ITEM_INDEX"/>
 <composite-element
 class="PendingOrderLineItem">
 <property name="quantity" column="QUANTITY"/>
 <many-to-one
 name="menuItem"
 column="MENU_ITEM_ID"

Hibernate ORM issues 205
 cascade="none" />
 </composite-element>

</list>
…
</class>

This mapping specifies that the lineItems property is a collection of Pending-
OrderLineItem components that is stored in the PENDING_ORDER_LINE_ITEM
table. Notice that because PendingOrderLineItem is mapped as a component it
does not have a separate <class> mapping.

 Here is the definition of the PENDING_ORDER_LINE_ITEM table:

CREATE TABLE PENDING_ORDER_LINE_ITEM (
 QUANTITY NUMBER(10) NOT NULL,
 PENDING_ORDER_ID NUMBER(10) NOT NULL,
 LINE_ITEM_INDEX NUMBER(10) NOT NULL,
 MENU_ITEM_ID NUMBER(10),
)

The PENDING_ORDER_ID column is a foreign key to the PENDING_ORDER table, and
the MENU__ITEM_ID column is a foreign key to the MENU_ITEM table. Notice that
this table does not have a surrogate primary key. Instead, the primary key consists
of the PENDING_ORDER_LINE_ITEM_ID and LINE_ITEM_INDEX columns.

 A benefit of using component collections is that Hibernate persists a newly cre-
ated child by executing a single INSERT SQL statement. There are, however, a cou-
ple of limitations. The child table cannot use a surrogate key, which means, for
example, that Hibernate will not set a surrogate primary key column to a gener-
ated value. If the table must have a surrogate key—in order to comply with data-
base schema design guidelines, for instance—the application must use a trigger to
initialize the primary key.

 Another important limitation of component collections is that the child class
can only be referenced by its parent. Because of this restriction, we cannot use a
component collection for the Restaurant-MenuItem relationship since menu items
are also referenced by pending order line items and order line items. We can,
however, use component collections for the PendingOrder-PendingOrderLineItem
and Order-OrderLineItem relationships because line items are referenced only by
their parent.

6.1.4 Using the cascade attribute

In chapter 4 we saw that an ORM framework must participate in the creation and
destruction of a persistent object in order to update the database. For example,

206 CHAPTER 6

Persisting a domain model with Hibernate 3
when the application creates a restaurant and its menu items, Hibernate must
update the database. Similarly, when the application wants to delete a restaurant
and its menu items, it must call Hibernate to delete them from the database. Sim-
ply using the new operator to create an object or relying on the garbage collector
to delete an object is insufficient.

 Hibernate provides a couple of ways of doing this. One option is for an appli-
cation to explicitly call save() to save a persistent object and delete() to delete a
persistent object. We would, for example, call save() or delete() on the restau-
rant and each of its menu items. The other option is to configure Hibernate to
automatically persist an object when it is referenced by an already persistent
object and delete an object when either its referencing object is deleted or it
becomes unassociated from its parent object. We can, for example, configure
Hibernate to automatically save the restaurant’s menu items when the restaurant
is saved and to delete the menu items when the restaurant is deleted. Not only
does automatically invoking operations such as save and delete on related objects
preserve the consistency of the database, but it also means that you have to write a
lot less code.

 You can control what happens on a per-relationship basis by specifying a value
for the cascade attribute of an association-mapping element, which describes how
the relationship is mapped to the database schema. The cascade attribute is a
comma-separated list of values that correspond to the names of certain Session
methods. It specifies whether a method that is invoked on the parent object
should recursively propagate to the child objects. For example, a value of save-
update specifies that save() should also save the children, and a value of delete
specifies that delete() should delete the children. The possible values for the
cascade attribute include:

■ none: The application must explicitly save or delete the referenced object
and is the default value unless overridden by the default-cascade attribute
of the <hibernate-mapping> element.

■ save-update: Hibernate will automatically save the referenced object when
it is associated with a referencing object that is already persistent or when
the referencing object is saved.

■ all: Hibernate will automatically save and delete the referenced object with
the referencing object.

■ delete: Hibernate will delete the children when the parent is deleted.

■ delete-orphan: This value is used for collections and specifies that an object
is automatically deleted when it is removed from the collection.

Hibernate ORM issues 207
You need to carefully determine the most appropriate cascade setting for each
relationship on a case-by-case basis. Mostly you will want use the default cascade
value of none for many-to-one and many-to-many relationships and a value of
either all or all,delete-orphan for one-to-many relationships. For example, a
value of all,delete-orphan is appropriate for the Restaurant-MenuItem relation-
ship because a menu item should be saved when associated with a restaurant and
deleted when either its restaurant is deleted or it is no longer associated with its
restaurant. Conversely, a value of none is appropriate for the PendingOrder-
Restaurant relationship because the restaurant’s lifecycle is independent of any
pending orders that reference it.

6.1.5 Persisting interfaces

Inheritance is an important OO concept and is widely used in domain models.
Persisting a class hierarchy is generally straightforward because Hibernate sup-
ports each of the mapping schemes described in chapter 4. It even lets you persist
interfaces, which means, for example, that you can define a mapping for the
PendingOrder-Coupon relationship. However, persisting an interface is tricky if you
want the classes in the hierarchy to have an identifier property. Unlike a class,
which can define private accessors for the identifier property or a private identi-
fier and a public getter, an interface must define public accessors, which is not a
desirable approach because of the lack of encapsulation.

 For example, if we want the classes in the Coupon hierarchy to have an identifier
property the Coupon interface must define a getId() and a setId() method:

public interface Coupon {
 int getId();
 void setId(int id);
…
}

Any of the Coupon’s clients could call the getId() and setId() methods, which is
less than ideal. Moreover, the classes that implement this interface are required to
define accessors, which is extra code that must be written.

 One way to improve encapsulation is to insert an abstract class into the hierar-
chy that implements the interface and defines the id field. The other classes in the
hierarchy are changed to extend the abstract class. The O/R mapping persists this
class instead of the interface. Although you do not need to change the type of any
of the fields that reference the interface, their association mapping elements must
have a class attribute that defines the property type to be the abstract class. This is

208 CHAPTER 6

Persisting a domain model with Hibernate 3
a good way to persist interfaces, but because Java lacks support for multiple inher-
itance there are situations where it conflicts with existing uses of inheritance.

 Luckily, the Coupon hierarchy is extremely simple and so we do not have this
problem. To persist these classes, we would define an AbstractCouponImpl class
that implements the Coupon interface. The concrete coupon classes such as Free-
ShippingCoupon extend this class. Here is part of the O/R mapping document for
the Coupon class hierarchy:

<class name="AbstractCouponImpl"
 table="COUPON">
…
 <discriminator column="COUPON_TYPE" />

 <subclass
 name="FreeShippingCoupon"
 discriminator-value="FREE_SHIP">
 <property name="code" column="CODE" />
 <property name="minimum" column="MINIMUM" />
 </subclass>
…
</class>

This mapping specifies that the AbstractCouponImpl class is mapped to the COU-
PON table and the <discriminator> element specifies that the discriminator col-
umn, which stores the type of the coupon, is called COUPON_TYPE. The <subclass>
element specifies that the FreeShippingCoupon subclass of Coupon is mapped to
the same table. The discriminator-value attribute of the <subclass> element
specifies that the discriminator value for the FreeShippingCoupon is FREE_SHIP.
The <property> elements map the fields of the FreeShippingCoupon class to the
COUPON table.

 The <many-to-one> for the PendingOrder.coupon field has the class="Abstract-
CouponImpl" attribute:

<class name="PendingOrder" table="PENDING_ORDER">
…
 <many-to-one name="coupon"
 class="AbstractCouponImpl" column="COUPON_ID"
 />
…
</class>

This attribute specifies that the PendingOrder.coupon field is really a reference to
an AbstractCouponImpl even though its type is Coupon. This approach eliminates
the need to add accessors for the identifier property to the Coupon and improves
encapsulation.

Other Hibernate issues 209
6.2 Other Hibernate issues

In addition to these O/R mapping issues, there are other issues with Hibernate
that can make writing applications difficult.

6.2.1 Exception handling

One potential problem with how Hibernate handles errors is that when it encoun-
ters an error, it throws a HibernateException and leaves the Session in a poten-
tially inconsistent state. According to the Hibernate documentation, the
application must close the Session immediately, which can sometimes make
recovering from exceptions unnecessarily complicated if the application wants to
continue using the Session. For more information, see chapter 8, which describes
how to recover from errors in an application that uses an exposed domain model.
Fortunately, this isn’t a problem when using a POJO façade because the applica-
tion uses a new Session each time the façade is called.

6.2.2 Lazy loading and inheritance hierarchies

As we saw in chapter 4, lazy loading is an important feature of an ORM frame-
work. Hibernate provides a couple of ways to do lazy loading. The simpler
approach is to use Hibernate’s proxy-based mechanism, which is enabled by
default in Hibernate 3. When using proxies, a reference to a lazily loaded object
is actually a reference to a proxy that will load the real object the first time one of
its methods is called. The trouble with proxies is that, as we describe a bit later,
they break code that uses instanceof or downcasting, which are two important
features of the Java language.

 Alternatively, if your application needs objects to use instanceof and down-
casting, then you can use lazy property loading. This mechanism works by loading
objects only when the property that references them is first accessed. The draw-
back of lazy property loading is that it is less convenient because you must run a
bytecode enhancer that modifies the classes to intercept references to properties.
In addition, Hibernate can generate suboptimal SQL to load an object referenced
by a lazily loaded property. Let’s look at the details of these two mechanisms.

Using proxies with instanceof and downcasting
Let’s imagine that you are writing some presentation tier code to display a pend-
ing order and that how you display a coupon depends on its actual class. You will
probably write some code similar to this:

210 CHAPTER 6

Persisting a domain model with Hibernate 3
Coupon coupon = pendingOrder.getCoupon();
if (coupon instanceof PercentageDiscountCoupon) {
 PercentageDiscountCoupon percentageCoupon =
 (PercentageDiscountCoupon)coupon;
 …
}
else if (coupon instanceof FreeShippingCoupon) {
 FreeShippingCoupon freeShippingCoupon =
 (FreeShippingCoupon)coupon;
 …
}
…

This code will certainly work with regular Java objects, but it won’t work when the
application uses Hibernate proxies to implement lazy loading. If Hibernate lazily
loads a Coupon, then PendingOrder.getCoupon() will return a proxy rather than the
real Coupon. Unfortunately, the trouble with proxies is that they do not work cor-
rectly with instanceof and do not support downcasting. A Coupon proxy will never
appear to be an instance of FreeShippingCoupon or PercentageDiscountCoupon,
and so neither call to instanceof will return true. Certainly, using instanceof is
generally not considered to be good style, but it is useful in cases such as this.

 An application can work around this problem by calling Hibernate.get-
Class(), which is a static method that returns an object’s true class:

Class trueClass = Hibernate.getClass(coupon);
if (PercentageDiscountCoupon.class.isAssignableFrom(trueClass)) {
…
}

The trouble with this solution is that it pollutes application code with calls to
Hibernate APIs.

 The other problem with proxies is that it is not possible to downcast a refer-
ence to a proxy. The downcasts in the previous code will fail if the Coupon is a
proxy. The workaround described in the Hibernate manual is to use parallel hier-
archy of interfaces and downcast to an interface instead of a concrete class:

 interface ICoupon {..};
 interface IPercentageDiscountCoupon extends Coupon {…};

if (PercentageDiscountCoupon.
b➥ isAssignableFrom(Hibernate.getClass(coupon))) {
 IPercentageDiscountCoupon percentageCoupon =
 (IPercentageDiscountCoupon)coupon;
 …
}

Other Hibernate issues 211
This, of course, requires changes to the domain model, which runs counter to the
idea of transparent persistence.

Using lazy property loading
The other way to lazily load related objects is to use Hibernate’s lazy property
fetching mechanism, which was introduced in Hibernate 3. This mechanism lets
you specify that a property should be loaded only when it is first accessed instead
of when the object is loaded. Its primarily purpose is to improve performance by
loading large fields only when absolutely necessary. It uses a bytecode enhancer to
instrument the Java class files. You can use lazy property fetching to lazily load
related objects without using proxies and thereby solve the problem with instan-
ceof and downcasting. However, as you will see later it has some important draw-
backs and using lazy property fetching is rarely worthwhile.

 To lazily load a related class, you must configure the <many-to-one> or <one-
to-one> association element that references the class to use lazy loading. You
must also disable proxying for the referenced class. For example, you can lazily
load a PendingOrder’s coupon by configuring the PendingOrder’s coupon property
with lazy="true". Here is an excerpt from the O/R mapping document for the
PendingOrder and Coupon classes that does this:

<class name="PendingOrder" table="PENDING_ORDER">
…
 <many-to-one name="coupon"
 class="AbstractCouponImpl"
 column="COUPON_ID"
 lazy="true"
 fetch="select"
 />
…
</class>

<class name="AbstractCouponImpl"
 lazy="false"
 table="COUPON">

…

The lazy="true" attribute of the <many-to-one> element specifies that the coupon
property should only be loaded when it is first accessed. The fetch="select" pre-
vents Hibernate from eagerly loading the Coupon using an outer join. The
lazy="false" attribute of the <class> element for the AbstractCouponImpl class
tells Hibernate to not use a proxy for this class.

 When Hibernate loads a PendingOrder, it will neither load the Coupon nor cre-
ate a proxy for it. A Coupon will only be loaded when the application accesses the

212 CHAPTER 6

Persisting a domain model with Hibernate 3
coupon field. Hibernate will instantiate the appropriate subclass of Coupon and the
application will be able to use instanceof and downcasting.

 Using lazy property fetching to implement lazy loading of related objects has
two main drawbacks. First, it is a lot less convenient than using proxies because
you have to run the bytecode enhancer, which is an extra step in the edit-compile-
debug cycle.

 Second, it is less efficient because lazily loaded properties are retrieved from
the database one at time, Moreover, Hibernate can use inefficient SQL to load
each property. For example, when loading a coupon Hibernate uses an additional
SQL statement that loads the COUPON_ID foreign key column from the
PENDING_ORDER table. Here are the SQL statements that Hibernate uses to load
the PendingOrder and its Coupon:

select pendingord0_....
 from PENDING_ORDER pendingord0_
 where pendingord0_.PENDING_ORDER_ID=?

select pendingord_.COUPON_ID as COUPON11_1_
 from PENDING_ORDER pendingord_
 where pendingord_.PENDING_ORDER_ID=?

select abstractco0_...
 from COUPON abstractco0_
 where abstractco0_.COUPON_ID=?

The first SQL SELECT statement retrieves all of the columns from the
PENDING_ORDER table except for the COUPON_ID column, which is the foreign key
to the COUPON table. The second statement, which is executed when the applica-
tion accesses the coupon property, retrieves the COUPON_ID foreign key column.
The third SQL SELECT statement loads the coupon. In comparison, if Hibernate
was configured to use proxies it would only use two SQL SELECT statements, one
for the PendingOrder and another for the Coupon.

 Because of these problems, it is usually much better to use Hibernate’s proxy-
based mechanism for lazily loading and to work around the problems with
instanceof and downcasting.

6.3 Persisting a domain model class using Hibernate

We have now seen the issues and challenges you will face when using Hibernate to
persist a domain model, so let’s look at an example. In this section, we implement
the Hibernate O/R mapping for the PendingOrder class from the Food to Go
domain model. It illustrates some of the typical issues that you will encounter

Persisting a domain model class using Hibernate 213
when persisting a domain model class with Hibernate. You will also learn how to
implement some of the testing techniques described in chapter 4, including how
to write tests that use the Hibernate metadata APIs to validate the O/R mapping.
In the following section, we show how to implement a domain model repository
using Hibernate.

 The PendingOrder class is a good example of a domain model entity. To persist
this class we will need to use a variety of Hibernate’s ORM features. The Pending-
Order class has simple fields such as deliveryTime and state that need to be
mapped to columns of the PENDING_ORDER table. It has also has fields that refer-
ence embedded value objects such as paymentInformation and deliveryAddress
that must also be mapped to columns in the PENDING_ORDER table. It also has ref-
erences to persistent objects stored in other tables, including PendingOrderLine-
Items, Restaurant, and Coupon. The reference to a Coupon is a polymorphic
reference because Coupon is an interface.

 But before getting into the details of writing the O/R mapping for this class,
let’s first look at how to write tests that verify that the persistent PendingOrder
objects can be created, loaded, updated, and deleted.

6.3.1 Writing Hibernate persistence tests with ORMUnit

Because we are using test-driven development, the first step in the process of mak-
ing the PendingOrder class persistent is to write some tests using the testing strate-
gies described in chapter 4. There are three different kinds of tests that we need
to write for a class such as PendingOrder:

1 Tests that verify that the O/R mapping correctly maps the PendingOrder
class to the database schema. This includes making sure that all fields that
should be persistent are mapped to the database.

2 Tests that verify that instances of the PendingOrder class can be created,
loaded, updated, and deleted. Sometimes, for example, incorrectly
defined database constraints prevent objects from being persisted.

3 Tests that verify that the tables and columns referenced by the Pending-
Order’s O/R mapping exist.

The ORMUnit test framework, which we introduced in chapter 4, provides Hiber-
nateMappingTests, HibernateSchemaTests, and HibernatePersistenceTests, which
are base classes that make it easier to write Hibernate persistence tests. Let’s see how
to use these classes.

214 CHAPTER 6

Persisting a domain model with Hibernate 3
HibernateMappingTests
HibernateMappingTests is the base class for writing tests for the O/R mapping. It
provides methods for making assertions about the O/R mapping, including:

■ assertClassMapping(): Verifies that the class is mapped to the specified
table

■ assertAllFieldsMapped(): Verifies that all of the fields of a class are
mapped

■ assertIdField(): Verifies that the class’s id field is mapped to the specified
column

■ assertField(): Verifies that a field is mapped to the specified columns

HibernateMappingTests call the Hibernate metadata APIs to find out about the
O/R mapping. The Hibernate metadata API exposes the O/R mapping as Java
objects. A test obtains the O/R metadata for a class by calling getClassMapping()
on the Configuration object that constructs the SessionFactory.

Configuration cfg = …;
PersistentClass classMapping =
 cfg.getClassMapping(PendingOrder.class.getName());

This method takes a Java class as a parameter and returns a PersistentClass
object that describes its O/R mapping. The Hibernate metadata APIs are only doc-
umented in the JavaDoc and not the manual, but they appear to be relatively sta-
ble. The only issues with using them is that the tests must call
Configuration.openSessionFactory() in order to ensure that Hibernate com-
pletely initializes the metadata. This can sometimes result in a database connec-
tion being opened, which can slow down the tests slightly.

 Here is an excerpt of the source code for HibernateMappingTests that shows
how assertClassMapping() verifies that the class is mapped to the specified table:

public abstract class HibernateMappingTests extends TestCase {

 private static Configuration cfg;
 private PersistentClass classMapping;
 private Class type;

 protected void assertClassMapping(Class type, String tableName) {
 this.type = type;
 classMapping = cfg.getClassMapping(type);
 assertEquals(tableName, classMapping.getTable().getName());
 }
…
}

Persisting a domain model class using Hibernate 215
The assertClassMapping() method gets the class mapping for the specified class
from the Configuration, which was constructed by the setUp() method (not
shown). It saves both the type and the class mapping in fields for use by other meth-
ods. It calls assertEquals() to verify that the class is mapped to the specified table.

HibernateSchemaTests
To verify that the database schema matches the O/R mapping we can use Hiber-
nateSchemaTests, which is shown in listing 6.1. It provides an assertDatabase-
Schema() method that checks for missing tables and columns by using Hibernate
to generate a SQL script from the mapping that adds any missing tables and
tables. The method throws an exception if the generated script contains SQL com-
mands that would change the schema.

public abstract class HibernateSchemaTests extends TestCase {

 public void assertDatabaseSchema() throws Exception {
 String[] script = generateScript();
 List differences = getSignificantDifferences(script);
 assertTrue(differences.toString(),
 differences.isEmpty());
 }

 private String[] generateScript() throws Exception {
 Configuration cfg = getConfiguration();
 SessionFactory sessionFactory = cfg.buildSessionFactory();
 Session session = sessionFactory.openSession();
 try {
 Dialect dialect = getDatabaseDialect();
 DatabaseMetadata dbm = new DatabaseMetadata(session
 .connection(), dialect);
 String[] script = cfg.generateSchemaUpdateScript(
 dialect, dbm);
 return script;
 } finally {
 session.close();
 }
 }

 protected Dialect getDatabaseDialect() throws Exception {
 return (Dialect)Class.forName(
 getConfiguration().getProperty(
 "hibernate.dialect"))
 .newInstance();
 }

 private List getSignificantDifferences(String[] script) {

Listing 6.1 HibernateSchemaTests

Generates
script

Fails if tables or
columns added

Generates
DDL script

216 CHAPTER 6

Persisting a domain model with Hibernate 3
 List differences = new ArrayList();
 for (int i = 0; i < script.length; i++) {
 String line = script[i];
 if (line.indexOf("add constraint")
 == -1)
 differences.add(line);
 }
 return differences;
 }

 protected Configuration getConfiguration()
 throws HibernateException {
 …
 return cfg;
 }
}

The assertDatabaseSchema() method first calls Configuration.generateSchema-
UpdateScript() to generate the script. It then finds any significant differences by
ignoring DDL commands to add constraints. It fails if it encounters any DDL com-
mands that add tables or columns.

HibernatePersistenceTests
In addition to HibernateMappingTests and HibernateSchemaTests, ORMUnit
defines the HibernatePersistenceTests class, which extends JUnit TestCase and
makes it easier to write tests for persistent objects. It defines setUp() and tear-
Down() methods that implement the boilerplate code of a Hibernate persistence
test and provides methods for manipulating persistent data and managing trans-
actions, including:

■ doInTransaction(): Executes the callback method within a Hibernate trans-
action and ensures that the same Session is used throughout. It does this
using a Spring TransactionTemplate that is configured to use a Hibernate-
TransactionManager.

■ save(): Saves an object by calling HibernateTemplate.save().

■ load(): Loads a persistent object by calling HibernateTemplate.load().

■ delete(): Deletes a persistent object by calling HibernateTemplate.delete().

See this book’s online source code for the details of the class. Let’s now look at
some tests that use ORMUnit.

Removes unimportant
commands

Persisting a domain model class using Hibernate 217
6.3.2 Testing persistent Hibernate objects

This section explores the persistence tests you need to write for the PendingOrder
class. Even though ORMUnit makes it easier to write tests, it can still be time con-
suming to develop thorough persistence tests. Consequently, we describe how to
start off with a simple test and then add more elaborate ones.

Verifying the O/R mapping
We need to write tests that verify that the O/R mapping correctly maps the Pend-
ingOrder class to the PENDING_ORDER table. We must verify that each persistent
class is mapped to the correct table and that each field is mapped to the correct
database column, foreign key, or join table. A good way to do this is to write tests
for the ORM documents using the Hibernate version of ORMUnit, which verifies
the O/R mapping by using Hibernate metadata APIs. This approach is much eas-
ier than using DbUnit to verify the contents of the database. The tests also run
much faster.

 Here is a very simple O/R mapping test for the PendingOrder class. FoodToGo-
HibernateMappingTests extends the ORMUnit HibernateMappingTests class and
defines a testPendingOrderMapping() method, which make basic assertions about
the PendingOrder class’s O/R mapping:

public class FoodToGoHibernateMappingTests extends
 HibernateMappingTests {

 public void testPendingOrderMapping() throws SQLException,
 HibernateException {
 assertClassMapping(PendingOrder.class, "PENDING_ORDER");
 assertAllFieldsMapped();
 }
…

This test verifies that the PendingOrder class is mapped to the PENDING_ORDER
table and that all of its fields are mapped to the database. It detects the common
problem of forgetting to define the mapping for a newly added field.

 This simple test is a good start, but sometimes it is useful to write a test that ver-
ifies that each field is mapped correctly to the database. Here is a more elaborate
test that makes assertions about the O/R mapping for each field of the Pending-
Order class:

218 CHAPTER 6

Persisting a domain model with Hibernate 3
public class FoodToGoHibernateMappingTests extends
 HibernateMappingTests {

 public void testPendingOrderMapping() throws SQLException,
 HibernateException {

 assertClassMapping(PendingOrder.class,
 "PENDING_ORDER");

 assertIdField("id", "PENDING_ORDER_ID");
 assertField("state", "STATE");

 assertManyToOneField("restaurant",
 "RESTAURANT_ID");

 assertComponentField("deliveryAddress");
 ComponentFieldMapping deliveryAddress =
 getComponentFieldMapping("deliveryAddress");
 deliveryAddress.assertAllFieldsMapped();

 assertCompositeListField("lineItems");
 CompositeListFieldMapping lineItems =
 getCompositeListFieldMapping("lineItems");
 lineItems.assertTable("PENDING_ORDER_LINE_ITEM");
 lineItems.assertForeignKey("PENDING_ORDER_ID");
 lineItems.assertIndexColumn("LINE_ITEM_INDEX");
 lineItems.assertField("quantity", "QUANTITY");
 lineItems.assertManyToOneField("menuItem", "MENU_ITEM_ID");
 lineItems.assertAllFieldsMapped();

 // PaymentInformation
 // Coupon
 // …
 assertAllFieldsMapped();
 }

Let’s look at the details:

testPendingOrderMapping() verifies that the PendingOrder class is mapped to the
correct table.

This method verifies PendingOrder’s simple value fields are mapped correctly.

testPendingOrderMapping() verifies the mapping for the PendingOrder-Restaurant
association.

This method verifies the mapping for delivery address, which is an embedded
value object.

B

C

D

E

B Verifies table
mapping

C Verifies simple
field mapping

D Verifies
association

E Verifies delivery
address

F Verifies line
items

G Verifies that all
fields are mapped

Persisting a domain model class using Hibernate 219
testPendingOrderMapping() verifies the mapping for the line items.

This method verifies that all fields are mapped by calling assertAllFieldsMapped().

As you can see, writing a comprehensive test for the mapping requires a lot of
work, but sometimes it is worthwhile. Let’s now look at how to verify that the
schema matches the O/R mapping.

Verifying that the schema matches the mapping
Another part of testing the O/R mapping is verifying the existence of all of the
database tables and columns that it references. Of course, if the schema is auto-
matically generated from the O/R mapping then we don’t have to do this. How-
ever, in many applications the schema is maintained separately and so can
potentially be inconsistent with the O/R mapping. ORMUnit makes it easy to verify
that the database schema matches the O/R mapping:

public class FoodToGoSchemaTests extends HibernateSchemaTests {

 public void test() throws Exception {
 assertDatabaseSchema();
 }
}

This test calls assertDatabaseSchema(), which was described earlier, to verify that
there are no missing columns. It will catch common mistakes such as defining the
O/R mapping for a new field without adding the corresponding column to the
schema. Because it can check that the schema matches the O/R mapping for all
classes, we only need to write it once.

 Now that we have written tests for the O/R mapping, let’s look at how to write
tests that create, find, update, and delete persistent objects.

Writing persistence tests
We are almost done with the tests. The last set of tests we must write are those that
create, update, and delete PendingOrders. These tests are necessary because some-
times incorrectly defined constraints can prevent objects from being persisted
and associations from being formed and destroyed. Consequently, it is useful to
write tests that take a persistent object through its lifecycle.

 Because writing these kinds of tests can be time consuming, you might want to
start off with a really simple test such as the following, which creates and saves a
PendingOrder:

public class HibernatePendingOrderPersistenceTests extends
 HibernatePersistenceTests {

G

F

220 CHAPTER 6

Persisting a domain model with Hibernate 3
 public void testPendingOrder() {
 PendingOrder po = new PendingOrder();
 save(po);
 }
}

A simple test will typically catch some basic O/R mapping problems. However, you
will usually want to write a more elaborate test that also updates the persistent
object and possibly deletes it. Listing 6.2 shows a test that takes a PendingOrder
through its lifecycle, which creates and destroys relationships with other objects,
including restaurants and line items. It consists of the following steps:

1 Create a PendingOrder and save it.

2 Load PendingOrder, update delivery information, and save it.

3 Load PendingOrder, update the restaurant, and save it.

4 Load PendingOrder, update quantities, and save it.

5 Load PendingOrder, update quantities, and save it (again to test deleting
line items).

6 Load PendingOrder, update payment information, and save it.

7 Delete PendingOrder.

Each step is executed within a transaction that keeps a Hibernate Session open so
objects can be loaded lazily.

public class HibernatePendingOrderPersistenceTests extends
 HibernatePersistenceTests {

 private RestaurantRepository restaurantRepository;
 private String pendingOrderId;
 private String restaurantId;

 protected Properties getSessionFactoryProperties() {
 return new Properties();
 }

 public void setUp() throws Exception {
 super.setUp();
 restaurantRepository =
 new HibernateRestaurantRepositoryImpl(
 getHibernateTemplate());

 delete(PendingOrder.class);
 delete(MenuItem.class);

Listing 6.2 HibernatePendingOrderPersistenceTests

B Creates Hibernate
RestaurantRepositoryImpl

C Initializes
database

Persisting a domain model class using Hibernate 221
 delete(Restaurant.class);
 Restaurant r =
 RestaurantMother.makeRestaurant();
 save(r);
 restaurantId = r.getId();
 }

 public void testSimple() throws Exception {

 createPendingOrder();

 updateDeliveryInfo();

 updateRestaurant(restaurantId);

 updateQuantities1();

 updateQuantities2();

 updatePaymentInfo();

 deletePendingOrder();
 }

 private void createPendingOrder() {
 PendingOrder po = new PendingOrder();
 save(po);
 pendingOrderId = po.getId();
 }

 private void updateDeliveryInfo() {
 doWithTransaction(new TxnCallback() {
 public void execute() throws Exception {
 Date deliveryTime = makeDeliveryTime();
 Address deliveryAddress = new Address("1 High St",
 null, "OAKLAND", "CA", "94619");

 PendingOrder po = (PendingOrder) load(PendingOrder.class,
 pendingOrderId);

 boolean updateDeliveryInfoResult =
 po.updateDeliveryInfo(
 restaurantRepository,
 deliveryAddress,
 deliveryTime,);

 assertTrue(updateDeliveryInfoResult);
 }
 });
 }

C Initializes
database

D Calls
helper methods

E Creates
PendingOrder

F Updates PendingOrder’s
delivery info

222 CHAPTER 6

Persisting a domain model with Hibernate 3
 private Date makeDeliveryTime() {
 Calendar c = Calendar.getInstance();
 c.set(Calendar.DAY_OF_WEEK, Calendar.TUESDAY);
 c.set(Calendar.HOUR_OF_DAY, 19);
 c.add(Calendar.DAY_OF_MONTH, 7);
 return c.getTime();
 }

 private void updateRestaurant(final String restaurantId) {
 doWithTransaction(new TxnCallback() {
 public void execute() throws Exception {
 PendingOrder po =
 (PendingOrder) load(PendingOrder.class,
 pendingOrderId);
 Restaurant r =
 (Restaurant)load(Restaurant.class, restaurantId);

 boolean updateRestaurantResult = po
 .updateRestaurant(r);
 assertTrue(updateRestaurantResult);
 }
 });
 }
 private void updateQuantities1() {
 doWithTransaction(new TxnCallback() {
 public void execute() throws Exception {
 PendingOrder po =
 (PendingOrder) load(PendingOrder.class,
 pendingOrderId);
 po.updateQuantities(new int[] { 1, 2 });
 }
 });
 }

 private void updateQuantities2() {
 doWithTransaction(new TxnCallback() {
 public void execute() throws Exception {
 PendingOrder po = (PendingOrder) load(PendingOrder.class,
 pendingOrderId);
 po.updateQuantities(new int[]
 {0, 3 });
 }
 });
 }

 private void updatePaymentInfo() {
 doWithTransaction(new TxnCallback() {
 public void execute() throws Exception {
 PendingOrder po = (PendingOrder) load(PendingOrder.class,
 pendingOrderId);
 PaymentInformation paymentInfo =

G Updates
its restaurant

H Updates its
line items

I Updates its line
items again

Persisting a domain model class using Hibernate 223
 PendingOrderTestData.PAYMENT_INFORMATION;
 po.updatePaymentInformation(paymentInfo, null);
 }
 });
 }

 private void deletePendingOrder() {
 doWithTransaction(new TxnCallback() {
 public void execute() throws Exception {
 PendingOrder po = (PendingOrder)load(PendingOrder.class,
 pendingOrderId);
 delete(po);
 }
 });
 }

}

HibernatePendingOrderPersistenceTests extends HibernatePersistenceTests.
Let’s look at the details:

The setup() method creates a HibernateRestaurantRepositoryImpl.

The setup() method deletes existing data and inserts a restaurant.

The testSimple() method calls a sequence of helper methods.

The createPendingOrder() method creates a PendingOrder and calls save(), which
is a method defined by HibernatePersistenceTests that calls Hibernate.save().

The updateDeliveryInfo() method updates the PendingOrder with delivery infor-
mation. It first calls load(), which is a method defined by HibernatePersisten-
ceTests that calls Hibernate.load(), and then calls updateDeliveryInfo().

The updateRestaurant() method loads the pending order and calls Pending-
Order.updateRestaurant().

The updateQuantities() method loads the pending order and updates the line
item quantities.

The updateQuantities() method loads the pending order and deletes one of the
line items.

The updatePaymentInformation() method loads the pending order and updates
the payment information.

The deletePendingOrder() method loads the pending order and deletes it.

Deletes
PendingOrder1)

B

C

D

E

F

G

H

I

J

1)

J Updates
payment info

224 CHAPTER 6

Persisting a domain model with Hibernate 3
This test corresponds to one possible scenario in the lifetime of a PendingOrder. In
order to thoroughly test PendingOrder, we would also need to write other tests, such
as one that calls updatePaymentInfo() with a Coupon. Developing these tests can be
time consuming, but they are an important part of the test suite for Hibernate per-
sistence layer. As with the O/R mapping tests, you can start off by writing a simple
test that creates and saves a PendingOrder and then add more comprehensive tests
over time. Let’s look at what we have to do in order to get these tests to pass.

6.3.3 Making a class persistent

We have written the tests and thus have put behind us what is often the most diffi-
cult part of persisting a class. To get these tests to pass, we have to make some minor
changes to the PendingOrder class and write the O/R mapping document.

Changing the class
To be able to persist a class, you typically have to make a few changes to accommo-
date Hibernate’s requirements. For example, a class must have a default construc-
tor. Also, you usually have to add a field to store the object’s persistent identity,
and some classes require a version field for optimistic locking. In addition, as
described in Hibernate in Action [Bauer 2005], you must—in certain situations—
implement equals() and hashCode() methods. Furthermore, even though Hiber-
nate provides a rich set of O/R mapping features, you sometimes have to make
changes to work around its limitations.

 Fortunately, we only need to make some minor changes to the PendingOrder
class. The class already has a default constructor, and does not require a version
field because its session state is accessed by just one user. As a result, we only have
to add an id field and a getter for accessing it:

public class PendingOrder {
 private int id = -1;

 private int getId() {
 return id;
 }
…

The rest of the class is unchanged and it’s still a POJO. As you can see, this is a very
simple change, which is one of the really nice things about using an ORM frame-
work such as Hibernate.

Persisting a domain model class using Hibernate 225
Defining the O/R mapping
Now that we have made that simple change to PendingOrder, the other thing we
must do is to write the O/R mapping document, which describes how its fields and
relationships map to the database schema. Let’s first examine how the Pending-
Order class, its fields, and its relationships are mapped to the database schema;
after that we’ll look at the Hibernate mapping document.

 In chapter 4 we described how the PendingOrder class is mapped to the
PENDING_ORDER table. The id field is mapped to the PENDING_ORDER_ID column,
which is the table’s primary key. Its simple fields are mapped to columns of this
table. The state field is mapped to the STATE column, and the deliveryTime field
is mapped to the DELIVERY_TIME column.

 The deliveryAddress and paymentInformation fields reference embedded
value objects, and so the fields of the Address and PaymentInformation objects are
mapped to the columns of the PENDING_ORDER table. For example, the street1
field of the Address object is mapped to the DELIVERY_STREET1 column of the
PENDING_ORDER table.

 The PendingOrder-PendingOrderLineItem relationship is an ordered, unidirec-
tional, one-to-many relationship. In addition, a PendingOrderLineItem must be
deleted when its PendingOrder is deleted or when it is no longer associated with a
PendingOrder. We saw in section 6.1.1 that Hibernate provides two ways to map this
kind of relationship: as an entity collection or as a component collection. Because
the line items are only referenced by PendingOrder, we can use a component col-
lection, which is slightly more efficient because Hibernate uses fewer SQL state-
ments. PendingOrderLineItems are mapped to the PENDING_ORDER_LINE_ITEM
table, which has a foreign key to the PENDING_ORDER table, and a LINE_ITEM_INDEX
column that stores the position of the line item.

 The PendingOrder-Restaurant and PendingOrder-Coupon relationships are uni-
directional, many-to-one relationships. The PENDING_ORDER table has a
RESTAURANT_ID column, which is a foreign key to the RESTAURANT table, and a
COUPON_ID column, which is a foreign key to the COUPON table.

 Listing 6.3 shows PendingOrder.hbm.xml, which is the O/R mapping document
for PendingOrder. PendingOrder.hbm.xml must be accessible at runtime and is
often located in the same directory of the class and on the class path. In chapter 7,
we will look at how to create a SessionFactory that uses PendingOrder.hbm.xml.

226 CHAPTER 6

Persisting a domain model with Hibernate 3
<hibernate-mapping>
…
 <class name="PendingOrder"
 table="PENDING_ORDER">

 <id name="id" column="PENDING_ORDER_ID"
 unsaved-value="-1">
 <generator class="native">
 <param name="sequence">
bbbbbbb➥ UNIQUE_ID_SEQUENCE</param>
 </generator>
 </id>

 <property name="deliveryTime"
 column="DELIVERY_TIME"
 type="timestamp"/>

 <property name="state" column="STATE" />

 <component name="deliveryAddress">
 <property name="street1"
 column="DELIVERY_STREET1"/>
 <property name="street2"
 column="DELIVERY_STREET2"/>
 <property name="city"
 column="DELIVERY_CITY"/>
 <property name="state"
 column="DELIVERY_STATE"/>
 <property name="zip"
 column="DELIVERY_ZIP"/>
 </component>

 <many-to-one name="restaurant"
 column="RESTAURANT_ID"
 class="Restaurant"/>

 <list name="lineItems"
 table="PENDING_ORDER_LINE_ITEM"
 cascade="all">
 <key column="PENDING_ORDER_ID"/>
 <index column="LINE_ITEM_INDEX"/>
 <composite-element
 class="PendingOrderLineItem">
 <property name="quantity"
 column="QUANTITY"/>
 <many-to-one name="menuItem"
 column="MENU_ITEM_ID"/>
 </composite-element>
 </list>

Listing 6.3 PendingOrder.hbm.xml

B Configures
class mapping

C Configures
primary key field

D Maps simple
fields

E Maps
deliveryAddress

F Maps
restaurant field

G Maps
lineItems field

Persisting a domain model class using Hibernate 227
 <many-to-one name="Coupon"
 class="AbstractCouponImpl"
 column="COUPON_ID"/>

 …
 </class>
…
<hibernate-mapping>

Let’s look at the details:

The <class> element specifies that the PendingOrder is mapped to the
PENDING_ORDER table.

The <id> element defines the primary key property and its column.

The deliveryDate and state fields are mapped to columns.

The mapping for the deliveryAddress field uses the <component> mapping. The
<property> elements nested within the <component> element map the fields of the
Address to columns of its PENDING_ORDER table. The mapping for the payment
information field is similar.

The PendingOrder-Restaurant relationship is mapped using a <many-to-one> ele-
ment.

The PendingOrder-PendingOrderLineItems relationship is mapped as a compo-
nent collection by using a <list> element that contains a <composite-element>, as
described in section 6.1.1.

The PendingOrder-Coupon relationship is mapped using a <many-to-one> element.

Note that the relationship mappings in this example use the default setting for
eager/lazy loading and so Hibernate will lazily load related classes such as Restau-
rant, Coupon, and PendingOrderLineItem. In section 6.5 you will see how to config-
ure eager loading to improve performance.

 After adding the id field to the PendingOrder class and writing the O/R map-
ping document, we can now persist instances of the PendingOrder class and the
tests that we wrote earlier pass. Let’s now see how to implement a repository class
using Hibernate.

B

C

D

E

F

G

H

H Maps
coupon field

228 CHAPTER 6

Persisting a domain model with Hibernate 3
6.4 Implementing a repository using Hibernate

In the previous section we looked at how to persist a domain model class using
Hibernate. The other part of implementing a persistent domain model is to imple-
ment the repositories, which define methods for creating, finding, and deleting
persistent objects. In this section, we’ll show you how to use a test-driven approach
to implement a repository that uses the Hibernate APIs to manipulate persistent
objects. We’ll use the RestaurantRepository.findAvailableRestaurants()

method, which finds the restaurants that serve a given delivery address and time, as
an example. We’ll first write some mock object tests for the RestaurantRepository,
and then we’ll write the method. After that, we’ll write some database tests for the
Hibernate query that is executed by the repositories to find the restaurants.

6.4.1 Writing a mock object test for a repository method

Mock object tests are a very effective way to directly test the functionality imple-
mented by the repository independently of the persistence framework and the
database. The findAvailableRestaurants() method retrieves the available restau-
rants by executing a query; therefore, a mock object test for this method must
invoke it with a delivery time and address and verify that it calls the Hibernate
APIs to execute the expected query with the expected parameters. As you will see,
the test is easy to write and executes extremely quickly.

 To write the mock object test, we must decide how the repository executes the
query. One easy decision to make is to use named queries. Rather than embed the
Hibernate query string in the code, it makes more sense to use a named query
and store the query string in the O/R mapping document. This makes the query
easier to read and change and also simplifies the code.

 Another decision is which API to use. The repository could use the Hibernate
Session and Query APIs directly. However, a better approach—one that requires
fewer lines of code and that is easier to mock—is Spring’s HibernateTemplate
class. It provides a number of convenience methods that wrap the Hibernate API.
In particular, it provides a HibernateTemplate.findByNamedQueryAndNamedParam()
method that takes three parameters: the query name, parameter names, and
parameter values.

 Using HibernateTemplate.findByNamedQueryAndNamedParam() makes testing
findAvailableRestaurants() very straightforward. A test can use a mock Hiber-
nateTemplate that verifies that findByNamedQueryAndNamedParam() is called with
the correct arguments. It can pass the mock HibernateTemplate to the repository
using constructor injection. Listing 6.4 shows the test for this method.

Implementing a repository using Hibernate 229
public class HibernateRestaurantRepositoryImplMockTest extends
 MockObjectTestCase {

 private Mock mockHibernateTemplate;
 private HibernateTemplate hibernateTemplate;
 private HibernateRestaurantRepositoryImpl repository;

 public void setUp() {
 mockHibernateTemplate =
 new Mock(HibernateTemplate.class);
 hibernateTemplate = (HibernateTemplate)
 mockHibernateTemplate.proxy();

 repository =
 new HibernateRestaurantRepositoryImpl(
 hibernateTemplate);

 }

 public void testFindAvailableRestaurants() {
 Restaurant restaurant = new Restaurant();
 int EXPECTED_MINUTE = 6;
 int EXPECTED_HOUR = 5;
 int EXPECTED_DAY_OF_WEEK = 3;
 List expectedRestaurants =
 Collections.singletonList(restaurant);

 Address deliveryAddress =
 new Address("1 somewhere", null,
 Oakland", "CA", "94619");

 Date deliveryTime =
 makeDeliveryTime(EXPECTED_DAY_OF_WEEK,
 EXPECTED_HOUR, EXPECTED_MINUTE);

 Object[] expectedValues =
 new Object[] {
 deliveryAddress.getZip(),
 new Integer(EXPECTED_DAY_OF_WEEK),
 new Integer(EXPECTED_HOUR),
 new Integer(EXPECTED_MINUTE) };
 String[] expectedNames = { "zipCode",
 "dayOfWeek", "hour",
 "minute" };

 mockHibernateTemplate.expects(once())
 .method("findByNamedQueryAndNamedParam")

Listing 6.4 HibernateRestaurantRepositoryImplMockTest

B Creates mock
HibernateTemplate

C Creates
repository

D Creates
test data

Configures mock
HibernateTemplate

E

230 CHAPTER 6

Persisting a domain model with Hibernate 3
 .with(eq("findAvailableRestaurants"),
 eq(expectedNames),
 eq(expectedValues))
 .will(returnValue(expectedRestaurants));

 List foundRestaurants =
 repository.findAvailableRestaurants(
 deliveryAddress, deliveryTime);

 assertEquals(expectedRestaurants,
 foundRestaurants);
 }

 private Date makeDeliveryTime(int dayOfWeek, int hour,
 int minute) {
 Calendar c = Calendar.getInstance();
 c.set(Calendar.DAY_OF_WEEK, dayOfWeek);
 c.set(Calendar.HOUR_OF_DAY, hour);
 c.set(Calendar.MINUTE, minute);
 return c.getTime();
 }

}

Let’s look at the details:

The setUp() method creates the mock HibernateTemplate.

The setUp() method creates the HibernateRestaurantRepositoryImpl, passing
the mock HibernateTemplate to its constructor.

The test creates some test data, including the parameters that are passed to
HibernateRestaurantRepository.findAvailableRestaurants() and the parame-
ters that are expected to be passed to HibernateTemplate.findByNamedQueryAnd-
NamedParam().

The test configures the mock HibernateTemplate to expect its findByNamedQuery-
AndNamedParam() method to be called with particular arguments.

The test calls findAvailableRestaurants()

The test verifies that it returns list of restaurants that was returned by the mock
HibernateTemplate.

As you can see, mock objects enable you to test the repositories without calling
Hibernate or the database. The tests are easy to write and execute very quickly. Of
course, the mock tests are only one part of the test suite; later on we will write the
tests for the query. But now let’s write the code to get this test to compile and pass.

B

C

D

E

F

G

Configures mock
HibernateTemplate

E

F Calls
findAvailableRestaurants()

G Verifies
the return value

Implementing a repository using Hibernate 231
6.4.2 Implementing HibernateRestaurantRepositoryImpl

HibernateRestaurantRepositoryImpl is the Hibernate implementation of the
RestaurantRepository interface. It retrieves restaurants by using a Spring Hiber-
nateTemplate to execute an HQL query. Listing 6.5 shows part of the source code
of this class.

public class HibernateRestaurantRepositoryImpl extends
 HibernateDaoSupport implements RestaurantRepository {

 public HibernateRestaurantRepositoryImpl(
 HibernateTemplate template) {
 setHibernateTemplate(template);
 }

 public List findAvailableRestaurants(Address deliveryAddress,
 Date deliveryTime) {
 String[] paramNames = {"zipCode",
 "dayOfWeek",
bbbbbbbbbbbbbbbbbbbbbbb"hour",
 bbbbbbbbbbbbbbbb"minute" };
 Object[] paramValues =
 makeParameterValues(deliveryAddress,
 deliveryTime);

 return getHibernateTemplate()
 .findByNamedQueryAndNamedParam(
 "findAvailableRestaurants",
 paramNames,
 paramValues);
 }

 Object[] makeParameterValues(Address deliveryAddress,
 Date deliveryTime) {
 Calendar c = Calendar.getInstance();
 c.setTime(deliveryTime);
 int dayOfWeek = c.get(Calendar.DAY_OF_WEEK);
 int hour = c.get(Calendar.HOUR_OF_DAY);
 int minute = c.get(Calendar.MINUTE);
 String zipCode = deliveryAddress.getZip();

 Object[] values = new Object[] { zipCode,
 new Integer(dayOfWeek), new Integer(hour),
 new Integer(minute) };
 return values;
 }

}

Listing 6.5 HibernateRestaurantRepositoryImpl

B Creates a
HibernateRestaurant
RepositoryImpl

Creates array
of parameter values

C

D Executes
named query

232 CHAPTER 6

Persisting a domain model with Hibernate 3
HibernateRestaurantRepositoryImpl extends HibernateDaoSupport, which pro-
vides convenience methods such as setHibernateTemplate() and getHibernate-
Template(). Let’s look at the details:

Its constructor takes a HibernateTemplate as a parameter and calls setHibernate-
Template(), which is defined by its superclass.

The findAvailableRestaurants() method calls makeParameterValues() to create
the array of parameters. The makeParameterValues() uses a Calendar to extract
the components of the delivery time and returns them in an array along with the
delivery ZIP code.

It executes the named query by calling HibernateTemplate.findByNamedQueryAnd-
NamedParam().

Once we write this method, the test we created earlier compiles and passes.
Because the test uses mock objects, it is not calling the real Hibernate APIs to exe-
cute a query. To complete the implementation, we must write the query.

6.4.3 Writing the query that finds the restaurants

The HibernateRestaurantRepositoryImpl retrieves the available restaurants by
executing a named Hibernate query, which is stored in the Hibernate mapping
document. The query finds all restaurants whose service area contains the speci-
fied ZIP code and that have a TimeRange that matches the specified time:

<hibernate-mapping>
…
<query name="findAvailableRestaurants">
 <![CDATA[
select r
from Restaurant r
 inner join r.openingHours.timeRanges tr
 where :zipCode in elements(r.serviceArea) and
(tr.dayOfWeek = :dayOfWeek
and
(tr.openHour < :hour
OR (tr.openHour = :hour and tr.openMinute <= :minute))
and
(tr.closeHour > :hour
OR (tr.closeHour = :hour and tr.closeMinute > :minute)))
]]></query>
…
</hibernate-mapping>

B

C

D

Implementing a repository using Hibernate 233
The query consists of a join between the restaurant and its time ranges. A restau-
rant is selected if its serviceArea field contains the zipCode and it has a TimeRange
that matches the specified time.

6.4.4 Writing tests for a query

At this point, you were probably hoping to be done, but alas there is one more set
of tests that we must write. The where clause of the query we just wrote contains
several relational operators. As you saw in chapter 4, it’s a good idea to test it with
various combinations of data. Each of the tests for this query, some of which are
shown in listing 6.6, initializes the database with test data, invokes the query with a
particular set of arguments, and verifies that it returns the expected results. The
test class extends the ORMUnit class HibernatePersistenceTests and uses the
RestaurantMother helper class to construct a test restaurant in the database.

public class HibernateRestaurantRepositoryQueryTests extends
 HibernatePersistenceTests {

 private static final String GOOD_ZIP_CODE = "94619";

 private static final String BAD_ZIP_CODE = "94618";

 protected void setUp() throws Exception {
 super.setUp();
 delete(Restaurant.class);
 Restaurant r = RestaurantMother
 .makeRestaurant(GOOD_ZIP_CODE);
 save(r);
 }

 private void findAvailableRestaurants(
bbbbbbbbbbbbbbb➥ int dayOfWeek, int hour,
 int minute, String zipCode, boolean expectRestaurants)
 throws Exception {
 String[] paramNames = { "zipCode", "dayOfWeek", "hour",
 "minute" };
 Object[] paramValues = new Object[] { zipCode,
 new Integer(dayOfWeek), new Integer(hour),
 new Integer(minute) };
 List availableRestaurants = getHibernateTemplate()
 .findByNamedQueryAndNamedParam(
 "findAvailableRestaurants", paramNames,
 paramValues);
 if (expectRestaurants)
 assertFalse(availableRestaurants.isEmpty());

Listing 6.6 HibernateRestaurantRepositoryQueryTests

B Initializes database

C Executes query

234 CHAPTER 6

Persisting a domain model with Hibernate 3
 else
 assertTrue(availableRestaurants.isEmpty());
 }

 public void
 testFindAvailableRestaurants_good()
 throws Exception {
 findAvailableRestaurants(Calendar.TUESDAY,
 RestaurantMother.GOOD_HOUR, 0, GOOD_ZIP_CODE, true);
 }

 public void
 testFindAvailableRestaurants_badZipCode()
 throws Exception {
 findAvailableRestaurants(Calendar.TUESDAY,
 RestaurantMother.GOOD_HOUR, 0, BAD_ZIP_CODE, false);
 }
}

Let’s examine HibernateRestaurantRepositoryQueryTests:

The setUp() method initializes the database by deleting existing restaurants and
inserting a restaurant that serves the 94619 ZIP code.

findAvailableRestaurants(), which is a helper method called by the tests, exe-
cutes the query with the parameters and verifies the result.

testFindAvailableRestaurants_good() executes the query with delivery informa-
tion that is served by a restaurant.

testFindAvailableRestaurants_badZipCode() executes the query with a ZIP code
that is not served by any restaurants.

This class would also define tests for various boundary conditions, such as a deliv-
ery time that is equal to the opening time of a restaurant.

 Although these tests can be time consuming to write and execute, they verify
that the query behaves correctly and are thus extremely useful.

6.5 Hibernate performance tuning

Chapter 4 described how eager loading and process-level caching can be used to
significantly improve performance. You can determine which relationships to
eagerly load by analyzing the application and then identify the relationships that
are traversed when handling each request. If the application always traverses a

B

C

D

E

D Tests with good
delivery info

E Tests with bad
delivery info

Hibernate performance tuning 235
relationship, you might want to configure it to be always eagerly loaded. Con-
versely, you might want to dynamically configure eager loading for relationships
that are only traversed by the application when handling particular requests.

 Whereas eager loading improves performance by loading related objects with
a single SELECT statement, process-level caching improves performance by elimi-
nating some SELECT statements. Instead of retrieving objects from the database,
the application retrieves them from the process-level cache. Keep in mind that
objects that are stored in a process-level cache should not be eagerly loaded
because that would bypass the cache.

 In this section, you will learn how to improve performance of a Hibernate
application. We describe how to configure eager loading in Hibernate and exam-
ine some of the ways Hibernate’s eager loading features interact with each other
and other Hibernate features. We also explain how to use process-level caching
and query caching, and we use the Place Order use case as an example. (We
aren’t going to discuss how to disable lazy loading for a class or how to use the lazy
property mechanism we saw in section 6.2.2 because they are rarely used and have
some significant limitations.)

6.5.1 Using eager loading

One important way to improve the performance of a Hibernate application is to
use eager loading. By default, Hibernate lazily loads objects and collections and
uses a separate SQL SELECT statement for each object or collection. By enabling
eager loading, you can configure Hibernate to load related objects with a single
SQL SELECT. You can enable eager loading for a relationship either statically in the
O/R mapping or dynamically in a query by using what is called a fetch join. You
can use both approaches simultaneously, although Hibernate HQL queries ignore
the static settings.

Statically configuring eager loading
One way to configure eager loading for a relationship is in the O/R mapping. In the
mapping for a relationship, you can specify that Hibernate should always eagerly
load the related object or objects when the referencing object is loaded. You con-
figure eager loading for a relationship by specifying a value for the fetch attribute
of the relationship’s mapping element. This attribute can have one of two values:

■ select: Lazily load the referenced object or collection with a separate SQL
SELECT statement. This is the default.

■ join: Eagerly load the referenced object or collection using an outer join.

236 CHAPTER 6

Persisting a domain model with Hibernate 3
You can, for example, configure the PendingOrder-Restaurant and PendingOrder-
LineItem-MenuItem relationships to be eagerly loaded with an order as follows:

<hibernate-mapping>

 <class name="PendingOrder"
 table="PLACED_ORDER">
…
 <many-to-one name="restaurant"
 fetch="join"
 column="RESTAURANT_ID"
…
 />
 </class>

 <class name="PendingOrderLineItem"
 table="PLACED_ORDER">
…
 <many-to-one name="MenuItem"
 fetch="join"
 column="RESTAURANT_ID"
 />
…
 </class>

</hibernate-mapping>

The fetch="join" attribute of the mapping element for the PendingOrder-Restau-
rant relationship tells Hibernate to load a PendingOrder by executing a SQL
SELECT statement that does an outer join between the PENDING_ORDER and RES-
TAURANT tables to retrieve both the pending order and its restaurant. The
fetch="join" attribute for the PendingOrderLineItem-MenuItem has a similar
effect. With this configuration, calling Session.load() with the PendingOrder
class and a pending order id will load a pending order, its restaurant, its line
items, and their menu items using two SELECT statements. The first loads the
pending order and the restaurant, and the second loads the line items and their
menu items.

 Although using the fetch attribute to configure eager loading for a relation-
ship might appear to be straightforward, there are a couple of important things to
remember. First, the fetch attribute only affects how objects are loaded by:

■ get() and load()

■ Navigation from one object to another

■ Criteria queries, which are described in detail in chapter 11

Hibernate performance tuning 237
The fetch attribute does not affect the behavior of HQL queries. HQL queries that
need to eagerly load objects must use fetch joins, which are described next.

 Second, for one-to-many and many-to-many relationships the fetch attribute
works in conjunction with the lazy attribute to determine how and when the
related objects are loaded. The collection mapping elements such as <list> and
<map> also have a lazy attribute, which determines how the collection is loaded if
fetch="select". If lazy="true" then the collection is loaded when it is accessed
by the application, but if lazy="false" then Hibernate loads the collection imme-
diately using a separate SQL SELECT statement. Table 6.2 summarizes this behavior.

One limitation of Hibernate is that a class can only have at most one collection
loaded using an outer join. This is to prevent inefficient queries that return the
Cartesian product of two large collections. However, this does mean that if you
want to load multiple collections then you have to write the extra code to load
them rather than relying on Hibernate to do it for you.

Dynamically configuring eager loading using fetch joins
Sometimes statically configuring eager loading in the O/R mapping works quite
well. If a relationship is always traversed, then it can be configured to use eager
loading in its mapping element. However, different requests often require differ-
ent objects to be eagerly loaded. For example, in chapter 4 we saw how the update
quantities request requires the pending order, its restaurant, and its restaurant
menu items to be loaded whereas the update payment information request requires
the pending order, its restaurant, its line items, and their menu items to be
loaded. To accomplish this, you must dynamically control eager loading by using
queries with fetch joins.

 A fetch join is a query construct that identifies a relationship to eagerly load.
When the application executes a query containing one or more fetch joins, Hiber-
nate executes a SQL SELECT that retrieves the related objects using joins. One
thing to remember is that HQL queries ignore the fetch join attribute specified

Table 6.2 How the fetch and lazy attributes control the loading of collection

fetch=select (default) fetch=join

lazy=true (default) Load collection when accessed
by application

Eagerly load collection using
an outer join

lazy=false Eagerly load collection using a
separate SELECT statement

Eagerly load collection using
an outer join

238 CHAPTER 6

Persisting a domain model with Hibernate 3
in the O/R mapping and only uses SQL joins for those relationships specified by
fetch joins.

 Let’s look at how the code for the Place Order use case can use fetch joins.
Instead of loading the PendingOrder by calling Session.load(), the PendingOrder-
Repository methods called by PlaceOrderService method must load the Pending-
Order and the required related objects by executing a query that uses fetch joins.
When updating the payment information, the PlaceOrderService would call the
following method to load the pending order:

public class HibernatePendingOrderRepositoryImpl {
…
 public PendingOrder
 findPendingOrderWithRestaurantLineItemsAndMenuItems(
 String pendingOrderId) {
 return (PendingOrder) getHibernateTemplate()
 .findByNamedQuery(
 "PendingOrder.
bbbbbbbb➥ findPendingOrderWithRestaurantLineItemsAndMenuItems",
 new Integer(pendingOrderId))
 .get(0);
 }

}

<hibernate-mapping>
…
<query name="PendingOrder.
bbbbbbbb➥ findPendingOrderWithRestaurantLineItemsAndMenuItems">
 <![CDATA[
from PendingOrder po
 left outer join fetch po.restaurant
 left outer join fetch po.lineItems as lineItem
 left outer join fetch lineItem.menuItem
 where po.id = ?
]]></query>
…
</hibernate-mapping>

This code executes the named query, which uses fetch joins to eagerly load the
pending order’s restaurant and its line item. Similarly, when updating the quanti-
ties the PlaceOrderService must call this method to load the pending order:

public class HibernatePendingOrderRepositoryImpl {
…
 public PendingOrder findPendingOrderWithRestaurantAndMenuItems(
 String pendingOrderId) {
 return (PendingOrder) getHibernateTemplate()
 .findByNamedQuery(

Hibernate performance tuning 239
 "PendingOrder.
bbbbbbbb➥ findPendingOrderWithRestaurantAndMenuItems",
 new Integer(pendingOrderId))
 .get(0);
 }
}

<hibernate-mapping>
…
<query name="PendingOrder.
bbbbbbbbb➥ findPendingOrderWithRestaurantAndMenuItems">
 <![CDATA[
from PendingOrder po
 left outer join fetch po.restaurant as r
 left outer join fetch r.menuItems
 where po.id = ?
]]></query>
…
</hibernate-mapping>

This code executes the named query, which eagerly loads the pending order’s res-
taurant and its menu items. In each case, Hibernate loads all the required objects
using a single SQL SELECT statement that does a multiway join between the
required tables.

Things to remember when using fetch joins
Fetch joins are a simple and concise way to eagerly load objects dynamically. But
there are several things you need to remember when using them. First, if you
retrieve a collection using a fetch join, then the ResultSet returned by the SELECT
statement might contain duplicate data. In the previous example, which retrieves
the line items, columns from the PLACED_ORDER and RESTAURANT tables are
duplicated in every row. This can impact performance if the query returns a large
number of rows and columns.

 Second, a query can only use a fetch join on a single collection. The other col-
lections will have to be loaded using separate queries or lazily. This prevents per-
formance problems caused by Hibernate executing a SQL SELECT statement that
returns the Cartesian product of two or more large collections.

 Finally, it is important to use a fetch join for all references to nonlazy objects
and collections in order to prevent performance problems caused by Hibernate
loading those objects using additional SQL SELECT statements. This is a variation
of the N+1 query problem because if a query returns N objects, Hibernate will exe-
cute N additional queries to load the related objects.

 A significant limitation of Hibernate’s fetch join mechanism is that the applica-
tion must have multiple versions of a query if different requests load different

240 CHAPTER 6

Persisting a domain model with Hibernate 3
objects eagerly, which can make the code more complicated. Instead of defining a
single findPendingOrder() method, the PendingOrderRepository must define mul-
tiple methods for retrieving PendingOrders, such as findPendingOrderWith-
RestaurantAndLineItems() and findPendingOrderWithRestaurantAndMenuItems().
This complicates the design of the domain model and makes it more difficult to
design a reusable domain model because you must anticipate how it will be used.
In comparison, JDO configures eager loading using fetch groups, which are
defined declaratively and are separate from the code. They also have the added
benefit of controlling eager loading during navigation, which is a feature that
Hibernate lacks.

 Now that you have seen how to optimize database accesses by using eager load-
ing, let’s look at how to reduce database accesses by using a process-level cache.

6.5.2 Using a process-level cache

By default, Hibernate caches objects in Session, which typically means that
objects are cached for the duration of the request. A Hibernate application can
also use a process-level cache that caches objects across sessions and hence
requests. Before accessing the database to load an object, Hibernate will first look
in the Session cache and then in the process-level cache. A process-level cache
can significantly reduce database accesses if the application accesses the same
date repeatedly. The process-level cache is best used to store objects that change
relatively infrequently.

 Hibernate has a pluggable caching architecture that supports a variety of dif-
ferent caching frameworks, which have varying capabilities. For example, Hiber-
nate ships with Ehcache [EHCache], which is a simple and efficient cache for use
in nonclustered environments. Examples of caching frameworks that work in a
clustered environment are SwarmCache [SwarmCache] and JBoss Cache [JBoss-
Cache]. For more information on how to configure these classes, please consult
the Hibernate documentation.

 In Hibernate, caching is configured on a per-class and per-collection basis.
Hibernate supports a variety of caching strategies including:

■ read-only—For read-only objects that are never modified by the application

■ read/write—For objects that are modified by the application

In this example, the restaurant-related classes—Restaurant, MenuItem, and Time-
Range—are rarely updated and thus are good candidates for process-level caching.
To cache these classes in the process-level cache, we must use the <cache> element

Hibernate performance tuning 241
in the O/R mapping. For example, we would configure process-level caching for
the Restaurant class as follows:

<class name="Restaurant"
 table="RESTAURANT">
 <cache usage="read-write"/>
…
</class>

The usage="read-write" attribute specifies that instances of this class are some-
times updated by the application. As we saw in chapter 4, cached classes that are
updated by the application should almost always use optimistic locking in order to
prevent the application from updating the database with stale data. To ensure that
the application uses the cache, you must also enable lazy loading for relationships
that are from objects that are not cached to objects that are. For example, you
must arrange for the PendingOrder-Restaurant relationship to use lazy loading to
ensure that restaurants are loaded from the cache.

 In this example, by caching the restaurants and menu items and by configur-
ing only the PendingOrder-PendingOrderLineItem to be eagerly loaded, the appli-
cation will load the pending order, its restaurant, its line items, and its menu items
using a single SQL SELECT statement.

6.5.3 Using a query cache

So far, we have optimized the loading of a pending order and its related objects by
caching the restaurants and using queries with fetch joins. We also need to con-
sider improving the performance of the query that finds the available restaurants.
By default, executing a Hibernate query causes the execution of a SQL SELECT
statement even if the application uses a process-level cache. Some applications
can benefit from the Hibernate query cache, which caches the results of a query
and eliminates the need to access the database. To enable the query cache, the
application must set the property hibernate.cache.use_query_cache to true; to
cache a particular query, the application must call Query.setCacheable(true).

 Caching a query only improves performance if it is executed frequently, and
the application rarely updates the tables referenced by the query because that
causes Hibernate to remove the query from the cache. Caching the query that
finds available restaurants might improve performance. However, because there
are potentially many combinations of values for the query’s parameters—ZIP
code and delivery time—it is unclear whether there would be any advantage, and
we would have to analyze the running application to determine that.

242 CHAPTER 6

Persisting a domain model with Hibernate 3
6.6 Summary

Hibernate provides mostly transparent persistence for POJO classes. It provides a
rich ORM mechanism that makes it quite easy to persist a domain model such as the
one for the Place Order use case. Its features include embedded value objects, inher-
itance, and automatic deletion of orphaned children in a parent/child relationship.

 Despite its power, Hibernate has several important limitations that can impact
the design of an application. One limitation is inefficient handling of unidirec-
tional one-to-many relationships that are mapped using a foreign key. Another
limitation is that lazily loaded objects do not support instanceof and downcast-
ing. In addition, recovering from an error when a HibernateException was
thrown can be difficult. Another challenge is dynamically configuring eager load-
ing on a per-request basis.

 You can use a test-driven approach to develop a Hibernate persistence layer.
There are three different kinds of tests you can write for each persistent class.
First, you can write a test that uses the Hibernate metadata APIs to verify that the
XML mapping document correctly implements the O/R mapping for the class.
Second, you can write persistence tests that verify that instances of the class can be
saved, updated, and deleted. Finally, you can write a test that that verifies that the
schema matches the O/R mapping. For each repository, you write mock object
tests that verify that the repository calls the Hibernate/Spring APIs correctly. You
can also write database tests for the queries that are called by the repositories.

 Now that we have looked at how to use Hibernate and JDO to persist a domain
model, the next step is to decide what kind of interface the business logic exposes
to the presentation. One option is to encapsulate the domain model with a POJO
façade that uses Spring for transaction management, as you’ll see in the next chapter.

Encapsulating the business
logic with a POJO façade
This chapter covers
■ Determining when to use a POJO façade
■ Designing a POJO facade
■ Managing transactions with Spring
■ Detaching persistent objects
243

244 CHAPTER 7

Encapsulating the business logic with a POJO façade
When I started using EJB, I enthusiastically embraced the J2EE patterns for encap-
sulating the business logic: the Session Facade pattern and the DTO pattern. I duti-
fully wrote the session beans and DTOs and patiently waited for the application to
deploy in the EJB container. But as the applications I developed became more com-
plex, my frustration with this approach grew. Even though session beans provide
declarative transaction management and security, I found that the price for using
them was too high. I had to write large amounts of DTO code and session bean boil-
erplate methods that did very little of value. More important, development was
painfully slow because of the long build times and the lengthy edit-compile-debug
cycles. I was ready for a different approach.

 After spending three days at The ServerSide Java Symposium 2004 learning
about such concepts as dependency injection and AOP, I decided it was time to try
the Spring framework. Spring offers many of the services provided by the EJB
framework but in a much more developer-friendly form. For example, with Spring
you just need to write a few lines of XML to make a POJO transactional. Spring
enables you to encapsulate your business logic with a POJO façade that you can
quickly and easily test within your IDE using regular JUnit tests. I discovered that
using the Spring framework dramatically increased my productivity.

 Of course, if you are familiar with EJB then you might have a few questions.
How exactly are transactions managed? What about remote clients? How does
security work? In this chapter you will learn the answers to these and other ques-
tions. We examine the benefits and drawbacks of using a POJO façade and show
you when to use it to encapsulate a domain model. We also describe how to use
Spring to manage transactions and persistence framework connections. Finally,
you’ll learn how to design, implement, and test a POJO façade using an example
façade from the Food to Go application.

7.1 Overview of a POJO façade

The modern car is a complex piece of machinery. It contains mechanical things
like pistons, cylinders, gaskets, and probably more computing power than was
used to send Neil Armstrong to the moon. Yet for the most part all of this com-
plexity is hidden from us. To make it go, all we interact with are a key, a steering
wheel, some pedals, and the gearshift lever. Those simple controls encapsulate
the complexity that is under the hood and elsewhere and make driving a car as
simple as possible.

 For the same kinds of reasons that we must encapsulate the internal mecha-
nisms of a car, we often need to hide the complexity of the business logic from its

Overview of a POJO façade 245
client, the presentation tier. The EJB way of encapsulating the business logic is to
use a session façade, and the POJO approach is to use a POJO façade. We saw in
chapter 1 that the concept of a POJO façade is very straightforward. Rather than
encapsulating your business logic with heavyweight session beans, you simply use a
POJO in conjunction with a lightweight container such as the Spring framework.
Like an EJB session façade, a POJO façade exposes a coarse-grained interface to
the presentation tier. It handles requests from the presentation tier by delegating
to the business logic.

 One key difference between a POJO façade and an EJB session façade is that
instead of using services provided by the EJB container, the POJO façade uses an
AOP framework such as Spring AOP to manage transactions and persistence frame-
work connections. The AOP interceptors automatically begin and commit transac-
tions and open and close persistence framework connections. The POJO façade’s
client—i.e., the presentation tier—simply gets the façade from the lightweight con-
tainer, which instantiates the façade and applies the necessary interceptors.

 Another key difference is that the POJO façade returns domain objects instead
of DTOs to the presentation tier. For example, as you will see a bit later, the POJO
façade that implements the Place Order use case returns the PendingOrder
domain object instead of a DTO containing a copy of its data. This simplifies the
façade considerably because you do not have to define a DTO for each domain
object and write the code to construct it, which in some applications is as much as
10 percent of the code.

 In this section you will learn about the benefits and drawbacks of using a POJO
façade and when to use one. But let’s first look at an example.

7.1.1 An example POJO façade

To see how a POJO façade works, let’s look at the PlaceOrderFacade. The Place-
OrderFacade handles requests from the presentation tier components that imple-
ment the Place Order use case and invokes the domain model that was developed
earlier in chapter 3. For example, one of its methods is updateDeliveryInfo(),
which is invoked by the presentation tier when the user enters the delivery address
and time. This method calls the PlaceOrderService to create or update the Pend-
ingOrder. The PlaceOrderFacade also invokes the RestaurantRepository to get the
available restaurants. The PlaceOrderFacade returns the detached PendingOrder
and Restaurant objects to the presentation tier, which displays them to the user.
Figure 7.1 shows the structure of the PlaceOrderFacade and its relationship with the
presentation tier and the domain model.

246 CHAPTER 7

Encapsulating the business logic with a POJO façade
The POJO façade consists of the following types:

■ PlaceOrderFacade is the interface that specifies the methods that can be
called by the presentation tier.

■ PlaceOrderFacadeImpl implements the PlaceOrderFacade interface by call-
ing the PlaceOrderService and other domain objects such as Restaurant-
Repository

■ Spring TransactionInterceptor is an AOP interceptor that manages trans-
actions and persistence framework connections.

Domain Model

POJO Façade

updateDeliveryInfo()
updateRestaurant()
...

PlaceOrderFacadeImpl

PendingOrder

Presentation Tier

updateDeliveryInfo()
updateRestaurant()
...

<<interface>>
PlaceOrderFacade

updateDeliveryInfo()
updateRestaurant()
...

<<interface>>
PlaceOrderService

Spring TransactionInterceptor

Restaurant

Restaurant
Repository

Figure 7.1 The structure of a typical POJO façade

Overview of a POJO façade 247
These classes work together as follows. When the presentation tier calls the Place-
OrderFacade, the Spring TransactionInterceptor begins a transaction and opens
a persistence framework connection for use by the repositories. The PlaceOrder-
FacadeImpl invokes the domain model classes to validate the input and perform
computations. When the PlaceOrderFacade returns, the TransactionInterceptor
closes the persistence framework connection and commits the transaction.

 In section 7.3 we will dive into details of this design. But first, let’s review when
it is appropriate to use a POJO façade and its benefits and drawbacks.

7.1.2 Benefits of a POJO façade

A POJO façade has several benefits. Let’s look at each one in turn.

Faster and easier development
It is a lot easier and faster to develop and test business logic that is encapsulated
with a POJO façade. Unlike an EJB façade, the POJO façade can be developed and
tested outside of the application server, and there is no need to develop and main-
tain DTOs for the domain objects.

Potentially eliminates need to use an EJB container
Another benefit of using POJO façades instead of EJB façades is that it can some-
times remove the requirement for the application to use EJBs. In many applica-
tions EJBs are only used to encapsulate the business logic. If the EJB session
façades are replaced with POJO façades, then the application often no longer
needs to use EJBs and can be deployed in a cheaper and simpler web container.

Simplified presentation tier
The Exposed Domain Model pattern, which is described in the next chapter, uses a
servlet filter to manage persistence framework connections. In comparison, when
using a POJO façade all transaction management and database access happens
within the façade and the Spring-supplied interceptors. The presentation tier is
completely unaware of those mechanisms.

Consistent view of the database
Because each call to the façade consists of a single database transaction, the appli-
cation can have a consistent view of the database by using the appropriate transac-
tion isolation level (see chapter 12). In comparison, the Exposed Domain Model
pattern potentially uses multiple database transactions per request and cannot
obtain a consistent view of the database.

248 CHAPTER 7

Encapsulating the business logic with a POJO façade
More flexible AOP-based design
Whereas an EJB 2 façade can only use the services provided by the EJB container, a
Spring AOP-based design has a lot of flexibility. For example, the application can
use its own custom interceptors to automatically retry transactions and implement
audit logging. It can also use a more flexible exception handling mechanism since
the application has greater control over which exceptions cause transaction roll-
backs and can use unchecked exceptions more easily. EJB 3 provides some of this
flexibility by letting you define interceptors, but Spring is much more flexible.

7.1.3 Drawbacks of a POJO façade

This approach has several drawbacks as well. Let’s look at each one of them in turn.

No support for transactions initiated by a remote client
One of the strengths of EJB is that it supports distributed transactions. A remote cli-
ent can initiate a transaction and invoke one or more EJBs, which then automatically
participate in the transaction. Any updates made by those EJBs are applied atomi-
cally when the client commits the transactions. If your application has a require-
ment to use this kind of distributed transaction, then you must use EJB. As you will
see in section 7.2.6, POJO façades can be invoked remotely but they cannot partic-
ipate in transactions that are initiated by a remote caller. However, this is rarely an
issue because very few applications actually use this kind of distributed transaction.

No equivalent to message-driven beans
Message-driven beans are a convenient way for an application to consume JMS
messages. The EJB container automatically invokes the message-driven bean when
a JMS message arrives and takes care of managing transactions. Unfortunately, as of
this writing Spring lacked support for the POJO equivalent of message-driven
beans. This means that you should most likely use message-driven beans if your
application uses JMS extensively. You can make developing with message-driven
beans more palatable by writing message-driven beans that delegate to POJO busi-
ness logic, which, of course, is easier to develop and test.

Nonstandard security
When implementing EJBs, you can use the EJB container’s security mechanism to
control access to them. Not only is this a well-tried and -tested mechanism, but
some application servers are also integrated with other security products that pro-
vide more elaborate capabilities. For example, IBM WebSphere is integrated with
other IBM products such as Tivoli Access Manager, which provides centralized

Overview of a POJO façade 249
access control throughout an organization. Obviously, only EJBs can use the EJB
container to provide security, so if you want to secure your POJO façade what can
you do?

 As you would expect, the open source community has responded to this need
and developed Acegi Security. Acegi Security [Acegi] is an open source security
framework for Spring. It uses Spring AOP to provide security for Spring beans. How-
ever, one drawback of using something like Acegi Security is that it is potentially less
mature than the security framework provided by the application server. Moreover,
while Acegi Security is integrated with some other security products, it might not be
integrated with the same ones that are available via the application server.

Client must be able to get the façade from the container
Because a POJO façade relies on AOP interceptors to manage transactions and con-
nections, its client must get the façade from the lightweight container. This isn’t a
problem for a web-based presentation tier, which might even be tightly integrated
with the lightweight container. But some clients might not be able to call the light-
weight container. For example, a web services code generator, which generates
code that exposes the façade as a web service, needs to know how to instantiate the
façade. If the code generator has no knowledge of the lightweight container, which
is responsible for creating the façade and applying AOP interceptors, it would not
be able to generate code that obtains the correct reference to the façade.

Detaching objects is potentially complex and fragile
Detached objects and POJO façades can be used independently. A POJO façade
can return DTOs, and a session façade can return detached objects. But since
POJOs and ORM frameworks that support detached objects go hand in hand, you
will most likely use them with a POJO façade. The façade must detach all of the
objects that the presentation tier will potentially access, which, as you will see later,
can require careful coding and is potentially error-prone.

 To see why, consider the following example. To enable the presentation tier to
render a page that displays a PendingOrder and its line items, the business tier must
detach those objects. But a developer easily could change that screen to display the
restaurant’s name in some situations without changing the business tier. Because it
is not possible to catch this problem at compile time, this can all too easily cause
hard-to-reproduce runtime errors. Although later on I describe ways to minimize
this problem, you often have to rely on extensive testing to catch bugs.

250 CHAPTER 7

Encapsulating the business logic with a POJO façade
Lack of encapsulation of the domain model
In a design that uses DTOs, the presentation tier simply has no access to the
domain objects and so cannot bypass the EJB façade and call them directly. Fur-
thermore, the structure of the DTOs does not have to mirror the structure of the
domain objects. As a result, the business tier can be changed without impacting
the presentation tier. You could even replace a domain model with transaction
scripts without affecting the presentation tier. In comparison, when using a POJO
façade the presentation tier accesses the domain objects directly and so there is an
increased risk of it being affected by changes to the business tier. Later in this
chapter I’ll show you how to partially encapsulate the domain objects and mini-
mize the impact of changes by using interfaces.

Some domain object methods cannot be called by the presentation tier
Another limitation of detached objects is that some methods cannot be called by
the presentation tier. Although many domain object methods return the value of
a field or perform simple calculations, others are much more complicated. For
example, a PendingOrder method could define a getDiscount() method that
retrieves a discount schedule from the database. If the presentation tier invoked
one of these methods, the persistence framework would throw an exception
because the connection is closed when the POJO façade returns. To avoid this
problem, the POJO façade must call those methods while the database connection
is open and return a DTO-like object that stores the computed values.

7.1.4 When to use a POJO façade and detached domain objects

The POJO façade should be used when:

■ The business logic does not participate in transactions initiated by remote
clients.

■ The application uses a lightweight container.

■ The client can get the façade from the lightweight container.

■ The business logic requires a consistent view of the database.

■ The domain objects can be easily detached and can be invoked by the pre-
sentation tier.

Now that we have looked at the benefits and drawbacks of a POJO façade, let’s
look at various design decisions that you must make when using one.

POJO façade design decisions 251
7.2 POJO façade design decisions

When designing a POJO façade, you must decide how to encapsulate and detach
domain objects, manage transactions, and support remote clients. Let’s look at
each one of these issues in turn.

7.2.1 Encapsulating the domain objects

We have seen that one potential drawback of returning domain objects to the pre-
sentation tier is that it could call methods to update the domain objects without
going via the façade or service. It could also call methods that try to access an exter-
nal resource such as the database, which would throw an exception because the
database connection was closed. For example, a JSP page that displays a Pending-
Order could call methods such as updateDeliveryInformation() or update-
Restaurant() that update the pending order.

 For some applications, the best way to deal with these problems is to simply
rely on the presentation tier developers to do the right thing. This can work
quite well for smaller projects, especially when the presentation logic and the
business logic are implemented by the same developer. But with other applica-
tions it’s important to encapsulate the domain objects and prevent them from
being used inappropriately.

 One option is to use Java’s visibility rules and define only those methods that
are callable by the presentation tier to be public. But since the business logic usu-
ally consists of multiple packages, we can rarely use this approach. We must
instead encapsulate the domain objects behind interfaces that define read-only
views of domain objects. The presentation tier is written in terms of these inter-
faces rather than the domain model classes. These interfaces can either be imple-
mented by the corresponding domain objects or by an adapter, which is a class
that delegates to the domain object. Let’s look at how these two approaches work.

Implementing the interfaces with domain objects
Imagine that you want to implement a JSP page that displays a PendingOrder, its
restaurant, and its line items. If the JSP page accessed those classes directly, it
could call several methods that should only be called by the business tier. A better
approach is to define an interface that specifies the methods that are available to
the JSP page. The JSP page is written in terms of this interface, which is imple-
mented by the PendingOrder class:

interface PendingOrderDetail {
 public Address getDeliveryAddress();

252 CHAPTER 7

Encapsulating the business logic with a POJO façade
 public Date getDeliveryTime();
 public RestaurantDetail getRestaurantDetail();
 public double getTotal();
 …
}

public class PendingOrder implements PendingOrderDetail {
…
 public .. updateDeliveryInfo(..) {…}
}

The JSP page that displays the PendingOrder would use the PendingOrderDetail
rather than PendingOrder.

 Read-only interfaces are mostly straightforward to implement. One problem
with using interfaces in JDK 1.4 and earlier is that because the return types are dif-
ferent, a getter that returns a view interface must have a different name than the
getter that returns the real object. For example, PendingOrderDetail defines
getRestaurantDetail(), which PendingOrder must implement as follows:

class PendingOrder implements PendingOrderDetail {
 public RestaurantDetail getRestaurantDetail() {
 return getRestaurant();
 }

 public Restaurant getRestaurant() {
 …
 }
…

It is tedious to write these methods and they clutter the code. Fortunately, Java 5
eliminates the need to write these extra methods by supporting covariant return
types. A subclass can define an overloaded method whose return type is a subtype
of the return type specified in the inherited method. This means, for example,
that the following code is legal:

interface PendingOrderView { RestaurantView getRestaurant(); }

class PendingOrder implements PendingOrderDetail {
 public Restaurant getRestaurant() { … };
…

Getters that return collections do not have this problem in JDK 1.4 because collec-
tions are untyped. The presentation tier can cast each element to the view inter-
face. For example, the presentation tier can cast each element of the List
returned by PendingOrderDetail.getLineItems() to a PendingOrderLineItem-
Detail. A Java 5 application can use typed collections with wildcards to enable a
subclass to override a method with a different return type.

POJO façade design decisions 253
 Another drawback of using view interfaces is that they do not help when the
presentation tier needs a value that is computed by a method that can only be
called by the business tier. In this situation, the business tier must call the method
and return the result to the presentation tier using either a DTO, which we are try-
ing to avoid using, or an adapter, which we will discuss next.

Implementing the interfaces with adapters
For example, suppose that the presentation tier could call any of the PendingOrder’s
getters except for the getTotal() method, which retrieves the pricing and discount
information from the database. We can encapsulate the PendingOrder using the
interface we saw earlier, except that the interface is implemented by a Pending-
OrderAdapter class, which stores a reference to the real PendingOrder and the total
computed by the business tier. All of its methods delegate to the PendingOrder
except for the getTotals() method, which returns the total stored in the field:

public class PendingOrderAdapter implements PendingOrderDetail {

 private PendingOrder pendingOrder;
 private double total;

 public PendingOrderAdapter(PendingOrder pendingOrder,
 double total, …) {
 this.pendingOrder = pendingOrder;
 this.total = total;
 …
 }

 public Coupon getCoupon() {
 return pendingOrder.getCoupon();
 }

 public Address getDeliveryAddress() {
 return pendingOrder.
bbbbbbbbbb➥ getDeliveryAddress();
 }

 public RestaurantDetail getRestaurant() {
 return pendingOrder.getRestaurant();
 }

 public double getTotal() {
 return total;
 }
 …
}

B Stores
PendingOrder and total

C Delegates to
PendingOrder

D Returns value
from total field

254 CHAPTER 7

Encapsulating the business logic with a POJO façade
Let’s look at the details:

The constructor takes the real PendingOrder and the total computed by the busi-
ness tier as parameters and stores them in fields.

Most methods delegate to the PendingOrder.

The getTotal() method returns the value stored in a field.

Adapters are somewhat similar to DTOs except that they do not involve copying as
much data because they delegate to the domain object. They are useful when
some values must be computed by the business tier. However, one downside of
using adapters is that you have to write more code than you would if the domain
object implemented an interface. In the extreme case, an adapter could store so
many values that it would effectively be a DTO.

7.2.2 Detaching objects

Another important POJO façade design issue is how to detach the domain objects
that are returned to the presentation tier. Each POJO façade method must ensure
that the object graph it returns to the presentation tier contains all of the
required objects. Otherwise, an exception will be thrown when the presentation
tier tries to access a missing object or collection. For example, if the presentation
tier displays the PendingOrder and its restaurant’s menu items, the business tier
must load those objects from the database and detach them. Let’s look at the
details of how to do this with JDO and Hibernate.

Using JDO detached objects
JDO will throw an exception if the application tries to access the field of an object
after its PersistenceManager is closed. In order to return JDO objects to the pre-
sentation tier, the façade must first call JDO to detach the object graph from a
PersistenceManager. Later on, it can call JDO to reattach the object graph to a
new PersistenceManager.

 A JDO application detaches objects by calling either Persistence-

Manager.detachCopy(), which returns detached copy of the specified object, or
PersistenceManager.detachCopyAll(), which returns a list of detached copies of
the specified objects. By default, these methods will detach only the objects that
are passed to them and not any referenced objects. For example, if you call
detachCopy() with a PendingOrder, its default behavior is to return a copy of the
PendingOrder whose line items, restaurant, and coupon fields are not initialized—
a JDODetachedObjectAccessException will be thrown if the application tries to
access them.

B

C

D

POJO façade design decisions 255
 If you want to detach one or more related objects such as a PendingOrder’s res-
taurant and its menu items, then you must configure JDO fetch groups, which you
first saw in chapter 5. Not only can fetch groups be used to configure eager load-
ing but you can also use them to configure detachment. An application uses a
fetch group to define the object graph to detach.

 There are a couple of ways to configure fetch groups to detach related objects.
One is to add the reference fields such as PendingOrder.restaurant and Restau-
rant.menuItems to their class’s default fetch group. Alternatively, the application
can use custom fetch groups to specify which related objects should be detached.
Once the fetch groups have been configured correctly, detachCopy() returns a
graph of objects. In section 7.5.2 you will see an example of how to use fetch
groups to detach multiple objects.

 An important benefit of JDO fetch groups is that because they are a declarative
mechanism you do not have to hardwire knowledge of the object structure into
the façade’s code as you do when using Hibernate. This simplifies the design of
the façade and improves maintainability.

 Later we will look at some sample JDO code, but now let’s look at detached
objects in Hibernate.

Using Hibernate detached objects
Because Hibernate objects are automatically detached when the session is closed,
the application only has to ensure that the objects required by the presentation tier
are loaded. The business tier will load some of those objects while handling the
request. But there will often be other objects required by the presentation tier that
will need to be loaded as well. For example, the business logic for the Place Order
use case might load the PendingOrder and its Restaurant in the course of handling
a request in order to invoke their methods. However, it’s possible that it would not
access the restaurant’s menu items, which because of lazy loading would never be
loaded. The POJO façade or the business logic must somehow ensure that those
objects are loaded in order to make them accessible to the presentation tier.

 For some applications, the simplest option is to configure Hibernate to use
one of the eager loading mechanisms I described in chapter 6. Hibernate will
eagerly load the objects required by the presentation tier when it loads the objects
that the business tier needs. You could, for example, load a PendingOrder with a
query that used a fetch join to load the restaurant and its menu items. No addi-
tional code is required, and the POJO façade can simply return the domain
objects back to the presentation tier. Unfortunately, one limitation of this
approach is that, as you saw in chapter 6, it can be difficult to configure Hibernate
to eagerly load the optimal set of objects for each request.

256 CHAPTER 7

Encapsulating the business logic with a POJO façade
 The other option is for each POJO façade method to make sure that the
objects required by the presentation tier are loaded by either navigating to them
or by calling Hibernate.initialize(). The initialize() method takes either an
object or a collection as a parameter and ensures that it is loaded. A POJO method
façade could, for example, force the pending order’s restaurant and its menu
items to be loaded using code such as this:

 Hibernate.initialize(pendingOrder.getRestaurant().getMenuItems());

A benefit of this approach is that a POJO façade method knows precisely what
objects will be needed by the presentation tier and can ensure that they are
loaded. The drawback is that it requires code, which must sometimes contain con-
ditional logic to handle null references and polymorphic references. For exam-
ple, if the reference to a restaurant could be null, you need to write code such as
this to avoid NullPointerExceptions:

Restaurant r = pendingOrder.getRestaurant();
if (r != null)
 Hibernate.initialize(r.getMenuItems());

This code can sometimes get quite complicated. Moreover, it can be difficult to
maintain because the structure of the object graph is hardwired into the façade.

7.2.3 Exceptions versus status codes

Another decision you need to make is whether the facade should use exceptions
or status codes to communicate errors to its caller. There are often many possible
outcomes of calling a façade method. For example, PlaceOrderFacade.update-
DeliveryInfo() normally updates the PendingOrder, but several things could go
wrong. There are, for instance, various application-level errors, such as delivery
information that is not served by any restaurants or a delivery time that is not far
enough in the future. Various infrastructure-level errors can also occur, including
database crashes or deadlocks. A POJO façade should certainly report an infra-
structure error to its caller by throwing an exception, but what about application-
level errors?

 One option is to return a DTO for the “normal” outcome and to throw an
exception for the other outcomes. One appealing feature of exceptions is that the
Spring TransactionInterceptor can be configured to automatically roll back the
transaction when an exception is thrown (as you will see later in this section). The
code does not have to programmatically roll back the transaction, which would
have the undesirable side effect of coupling the code to the Spring framework.

POJO façade design decisions 257
 However, one issue with using exceptions is that calling a façade method can
have several equally valid outcomes. Even validation errors such as invalid delivery
information can be considered normal. This means that choosing the “normal”
outcome is somewhat arbitrary. Another issue is that the exception will typically
need to contain the data that the presentation tier displays to the user, so throw-
ing an exception is not that straightforward.

 Because of these shortcomings, my preference is to use exceptions only for
truly exceptional conditions (such as database connection failures) and to use sta-
tus codes to signal application-level errors. However, if the transaction needed to
be rolled back, then I would throw an exception for an application-level error in
order to decouple the business logic from the Spring framework.

7.2.4 Managing transactions and connections

A POJO façade method must usually be executed within a transaction in order to
ensure that it updates the database atomically. The application must start a trans-
action when the POJO façade method is invoked and either commit or roll back
the transaction when it returns. In addition, when the POJO façade method is
invoked the application must open a connection (a JDBC connection, a Hibernate
session, or a JDO PersistenceManager) and close it after the method returns.

 The Spring framework has an AOP-based transaction and connection manage-
ment mechanism. You define Spring beans that wrap your application code with
AOP interceptors that manage transactions and connections. Spring transaction
management, like EJB container-managed transactions, is declarative; you do not
have to write any code.

 A valuable feature of Spring transaction management is that although EJB con-
tainer-managed transactions require the application to use JTA transactions,
Spring also provides the option of local transactions, which are lighter weight and
don’t require an application server to manage transactions. Furthermore, switch-
ing to JTA transactions (which are only required if an application needs to update
multiple resources such as a database and JMS) is simply a matter of reconfiguring
a Spring bean.

Configuring the Spring TransactionInterceptor
Declaratively managing transactions with Spring is remarkably easy. You simply have
to use a TransactionInterceptor, which is a Spring AOP interceptor. It intercepts
calls to the POJO façade and ensures that each one executes in the transaction. In
addition, depending on how you have configured the TransactionInterceptor it
will also open and close a database or persistence framework connection.

258 CHAPTER 7

Encapsulating the business logic with a POJO façade
 To see how to configure a TransactionInterceptor, let’s imagine that the
TransferFacade from chapter 1 has the following interface:

public interface TransferFacade {

 public BankingTransaction transfer(
 String fromAccountId, String toAccountId,
 double amount)
 throws MoneyTransferException;

 public void getBalance(String accountId);

}

The transfer() method transfers money from one account to another and throws
a MoneyTransferException if the transfer fails. We want this method to be executed
within a transaction that is rolled back if the MoneyTransferException is thrown.
The getBalance() method returns the balance of the specified account. It doesn’t
need to be executed within a transaction because it does not update the database.

 Here is the definition of a TransactionInterceptor that manages transactions
for the TransferFacade:

<beans>

<bean id="ExampleTransactionInterceptor"
 class="org.springframework.transaction.interceptor.
bbbbb➥ TransactionInterceptor">
 <property name="transactionAttributeSource">
 <value>net.chrisrichardson.bankingExample.facade.
bbbbb➥ TransferFacade.transfer=PROPAGATION_REQUIRED,
bbbbbbb➥ net.chrisrichardson.bankingExample.facade.
bbbbbbb➥ MoneyTransferException
 net.chrisrichardson.bankingExample.facade.TransferFacade.get*=
bbb➥ PROPAGATION_SUPPORTS, readOnly
 </value>
 </property>
 <property ref="transactionManager"/>
</bean>
…
</beans>

The transactionAttributesSource property specifies the transaction attribute for
each method. In this example, the transaction attributes for the transfer()
method are

PROPAGATION_REQUIRED,-net.chrisrichardson.bankingExample.facade.
bbbbbbbbb➥ MoneyTransferException

POJO façade design decisions 259
A value of PROPAGATION_REQUIRED indicates this method must be executed in a
transaction. The TransactionInterceptor will start a transaction if one is not
already in progress.

 The -net.chrisrichardson.bankingExample.facade.MoneyTransferException
entry is an example of a Spring rollback rule and tells the TransactionInterceptor
to roll back the transaction if the MoneyTransferException is thrown. By default,
Spring behaves like EJB and only rolls back a transaction if an unchecked excep-
tion is thrown, but you can override this behavior by configuring rollback rules.
This example uses a rollback rule that tells the TransactionInterceptor to roll
back when a checked exception is thrown, but you can also write rollback rules that
commit transactions when unchecked exceptions are thrown. An important bene-
fit of rollback rules is that they enable the application to roll back a transaction
without calling a Spring API. This is yet another example of how Spring does not
intrude on your application’s code.

 The transaction attributes for the getBalance() method, which matches the
get* wildcard, are

PROPAGATION_SUPPORTS, readOnly

The PROPAGATION_SUPPORTS value indicates that this method can be executed in a
transaction but does not require one. The readOnly value indicates that this
method does not update the database, which allows some database systems, to
optimize the transaction.

 In addition to specifying the transaction attributes of each method, you must
specify the PlatformTransactionManager used by the TransactionInterceptor.
The PlatformTransactionManager is a Strategy (as in the Strategy pattern) that is
used by the TransactionInterceptor to begin, commit, and roll back transac-
tions. Figure 7.2 shows some of the different implementations of PlatformTrans-
actionManager.

 The PlatformTransactionManager interface specifies three methods: get-
Transaction(), which begins a transaction; commit(), which commits a transaction;
and rollback(), which roll backs a transaction. Which kind of Platform-
TransactionManager you use depends on whether you are using local transactions
or JTA transactions. All of the examples in this book use local transactions but can
easily be enhanced to use JTA transactions by simply reconfiguring the Trans-
actionInterceptor.

260 CHAPTER 7

Encapsulating the business logic with a POJO façade
Using local transactions
A local transaction involves only a single database, and can be started, committed,
and rolled back using the JDBC or persistence framework APIs directly. Spring
provides several PlatformTransactionManager implementations for managing
local transactions; which one you use depends on how the application accesses
the database. A JDO application uses a JdoTransactionManager, which manages
transactions using the JDO Transaction interface, and a Hibernate application
uses a HibernateTransactionManager, which manages transactions using the
Hibernate Transaction interface. In addition, a JDBC application uses a Data-
SourceTransactionManager, which manages transactions using the JDBC Connec-
tion interface (this is described in more detail in chapter 9).

 As well as managing transactions, these PlatformTransactionManager imple-
mentations manage a connection that can be used by the repositories that are
called during the transaction. Behind the scenes, they use a ThreadLocal to bind
the connection to the thread. Before starting the transaction, the JdoTransaction-
Manager opens a PersistenceManager, which can be obtained by the repositories
using PersistenceManagerFactoryUtils.getPersistenceManager(). It closes the
PersistenceManager after the transaction ends. Similarly, a HibernateTransaction-
Manager manages a Session, which the repositories can access by calling Session-
FactoryUtils.getSession(). Spring's ORM template classes use these methods to
get a persistence framework connection.

invoke()

Transaction
Interceptor

getTransaction()
commit()
rollback()

<<interface>>
Platform

Transaction
Manager

Uses

JdoTransaction
Manager

Hibernate
Transaction

Manager

JtaTransaction
Manager

...

Manages local
transactions

Manages global/JTA
transactions

Figure 7.2 The different implementations of the PlatformTransactionManager interface

POJO façade design decisions 261
 An application can use local transactions if it only updates a single database via
JDBC, JDO, or Hibernate. However, applications that update multiple databases or
update a database and use JMS must use JTA.

Using JTA transactions
A JTA (or global) transaction is a transaction that involves multiple databases
and/or resources such as a JMS. An application uses JTA transaction either by
using the JTA APIs directly or by using EJB container-managed transactions that
call the JTA APIs internally. The JTA APIs call the transaction manager (not to be
confused with the Spring PlatformTransactionManager interface), which is typi-
cally provided by the application server. The transaction manager coordinates the
atomic commit and rollback of the multiple resources.

 To use a JTA transaction in a Spring application, you simply configure the
TransactionInterceptor with a JtaTransactionManager, which is a PlatformTrans-
actionManager that manages the transaction using the JTA APIs. However, one
important difference between the JtaTransactionManager and the PlatformTrans-
actionManagers that manage local transactions is that it does not manage a persis-
tence framework connection. You can either let the ORM template class open the
connection, or you can use a persistence framework-specific interceptor. For exam-
ple, a HibernateInterceptor binds a Hibernate Session to the thread and a Jdo-
Interceptor binds a JDO PersistenceManager to the thread.

7.2.5 Implementing security

In the film The Lord of the Rings, the town of Bree has a gatekeeper who decides
who can enter the town. At night, when the gate is closed he looks through a
peephole to make sure that the visitor is not an enemy of the town. A façade that
encapsulates the business logic often plays the role of gatekeeper. It verifies that
the caller has permission to invoke a particular façade method. Hopefully, the
façades in your application will fare better than Bree’s gatekeeper. Shortly after he
let in Frodo and his companions, the Black Riders sent the town’s gate crashing
down on top of him.

 An EJB can use the declarative security mechanism provided by the EJB con-
tainer, which verifies that the user has permission to execute a business method. It
also can call the EJBContext to get the identity of the caller and determine
whether the caller is in a particular role. A POJO façade does not use the EJB con-
tainer and so must adopt a different approach to security. It can either rely on the
presentation tier to provide security or, if the POJO façade must enforce security, it
can use a framework such as Acegi Security.

262 CHAPTER 7

Encapsulating the business logic with a POJO façade
Using web tier security
Some applications can get away with only enforcing security in the presentation
tier. The POJO façade assumes that any security checks have been done by the pre-
sentation tier and does not do any itself. The presentation tier can use the security
mechanisms provided by the web container to control access to web pages based
on the user’s identity or role. It can, for example, declaratively specify that a user
must be in a particular role to access a URL. Also, the presentation tier can call
HttpServletRequest methods that return the identity of the user and test whether
the user is in a particular role.

Implementing security with Acegi Security
Although web tier-only security is adequate for some applications, many applica-
tions require security to be handled in the business tier. For example, an applica-
tion with more stringent security requirements might not be able to assume that
the presentation tier will do the right thing. Alternatively, it might have business
logic that does different things depending on the caller’s identity. One way to
implement security with POJO business logic is to use Acegi Security, which pro-
vides security for Spring applications. We’re only going to briefly describe a few of
the features of this comprehensive framework, so for more information see the
reference [Acegi].

 Acegi Security provides the several options for storing the users and their
roles. You can configure it to use the security infrastructure provided by the
underlying web container or application. Alternatively, Acegi Security can main-
tain the user and role information itself—in a database, for example. One key
thing to remember is that Acegi Security has a very flexible architecture that
enables it to support a wide range of applications.

 Acegi Security has an AOP-based mechanism that can be used to verify that the
caller has permission to invoke a POJO façade method. You can, for example, use
the MethodSecurityInterceptor class, which is a Spring AOP interceptor, to inter-
cept calls to a POJO and throw an exception if the caller is not authorized. You
configure MethodSecurityInterceptor as a Spring bean in almost the same way
you would configure a Spring TransactionInterceptor. As part of its definition in
the XML configuration file, you specify the roles that are allowed to invoke each
method. You would also use a Spring AOP proxy creator such as BeanNameProxy-
Creator to apply the MethodSecurityInterceptor to a particular POJO façade.

 Acegi Security also has a SecurityContextHolder class, which defines static
methods for obtaining the caller’s identity and roles. In the same way that an EJB
can get information about the caller from the EJBContext, POJO business logic

POJO façade design decisions 263
that does different things depending on the identity of the caller can call the
SecurityContextHolder.

 Security is one of the issues you must address when developing a POJO façade.
Another is remoting.

7.2.6 Supporting remote clients

In many applications, the business tier is invoked by a presentation tier that runs
within the same JVM. However, in some applications the business tier is invoked by
a client running on a different machine. For example, an application running on
a cell phone that enables a customer to order dinner on the way home would
invoke the PlaceOrderFacade remotely. Supporting remote clients with EJBs is easy
because remote invocation is built in. It even allows EJBs to participate in transac-
tions that are initiated by remote clients. If we want a POJO façade to support
remote clients, then we have to use a separate remoting technology.

 Once again the Spring framework comes to the rescue. It supports several
methods of exposing a POJO façade to a remote client:

■ Standard Java RMI

■ Hessian, an open source binary HTTP protocol that uses its own serializa-
tion mechanism for Java objects

■ Burlap, an open source XML over HTTP protocol that uses its own serializa-
tion mechanism for Java objects

■ Spring HTTP, an HTTP protocol provided by Spring that uses standard Java
serialization

■ Web services using the Java API for XML-based RPC (JAX-RPC) and Axis

Please note, however, that none of these technologies allows a POJO façade to par-
ticipate in a transaction initiated by a remote client. If that is one of your require-
ments, then you must use EJBs.

 Spring makes it remarkably easy to expose a POJO façade to a remote client
using RMI, Hessian, Burlap, or the Spring HTTP invoker. You configure an
“exporter” Spring bean such as RMIServiceExporter, or HessianServiceExporter
takes care of the infrastructure magic required to map requests from remote cli-
ents into calls to POJO façade methods. Exposing a POJO façade as a web service is
not quite as easy because you do need to write some code, but it is still very
straightforward. For more information on using these remoting technologies with
Spring, see the Spring documentation or Spring in Action [Walls 2005].

264 CHAPTER 7

Encapsulating the business logic with a POJO façade
7.3 Designing a POJO façade’s interface

The process of implementing a POJO façade consists of the following steps:

1 Design the POJO façade’s public interface.

2 Implement the POJO façade’s methods, which call the domain model
objects and the result object factory.

3 Implement the result object factory that is called by the POJO façade to
detach the domain objects.

4 Configure the Spring framework’s AOP interceptors, which provide ser-
vices such as transaction management.

In this section, you will learn how to design the POJO façade’s public interface. We
describe how to identify the methods and the parameters, and how to return val-
ues. You will also see examples of how to encapsulate the domain objects to pre-
vent the presentation tier from calling methods that it should not. We use the
PlaceOrderFacade, which we introduced earlier, as an example. Later sections in
this chapter describe the other steps in the process.

7.3.1 Determining the method signatures

The design of a POJO façade is driven by the needs of the presentation tier. Each
POJO façade method corresponds to a request handled by the presentation tier.
The method’s parameters correspond to user input, and its return values include
data that is displayed by the presentation in response to the request. Conse-
quently, in order to design a POJO façade, we need to understand the presenta-
tion tier’s requirements.

 The presentation tier in a web application handles HTTP requests and gener-
ates HTTP responses. An HTTP request is sent by the browser when the user clicks
on a link or submits a form. Some HTTP requests might be handled entirely by the
presentation tier, but most requests result in a call to the business tier to update
the database or to retrieve data. The HTTP response is typically an HTML page but
could also be data for a rich client using a technology such as Ajax [Crane 2005]
that runs in the browser.

 To determine the methods that a POJO façade must provide, you need to know
the requests that are handled by the presentation tier. The presentation tier calls a
POJO façade method, passing as arguments the user’s input and any session state
stored in the presentation tier or the browser. The POJO façade must return the data
that the presentation tier needs to display the page along with any updated session

Designing a POJO façade’s interface 265
state. As you can see, in order to define
the POJO façade you must have some
understanding of the presentation tier.

 Consider the following example.
The UI for the Place Order use case
consists of several web pages. Two of
these pages are shown in figure 7.3 and
figure 7.4. Figure 7.3 shows the Restau-
rant List page, which displays the list of
available restaurants for the delivery
information entered by the user. This
page displays information obtained by a
previous request to the façade. Each res-
taurant name is a link whose URL has
the restaurant ID as a parameter.

 Figure 7.4 shows the Order page,
which is displayed when the user selects
a restaurant. This page displays the
selected restaurant’s menu items and
lets the user enter quantities for each
one.

 When the user selects a restaurant,
their browser sends an HTTP request
containing a parameter that specifies
the ID of the selected restaurant. The
application must update the Pending-
Order with the selected restaurant,
retrieve the restaurant’s menu items,
and display the Order page. Figure 7.5 shows how the various components handle
the request.

 In order for the presentation tier to handle this request, the PlaceOrderFacade
must provide an updateRestaurant() method:

public interface PlaceOrderFacade {

 public PlaceOrderFacadeResult updateRestaurant(
 String pendingOrderId, String restaurantId);

…

Select Restaurant

TypeName

IndianAjanta

Description

Fine Indian dining

PizzaXYZ Pizza Excellent Pizza

...

Back Cancel

Order

1Meat Samosas

Kima Curry

Update Checkout

$3.75

Name Quantity Price

1 $9.75

Ginger Chicken 1 $10.75

Naan Bread 1 $3.75

Chapati 1 $2.75

Mango Lassi 1 $1.75

$32.50Total

Delivering to:
100 Some Street

From:
Ajanta

When:
8.30pm

Figure 7.3 Restaurant List page

Figure 7.4 Order page

266 CHAPTER 7

Encapsulating the business logic with a POJO façade
This method takes as parameters the pendingOrderId, which is stored in the
HttpSession, and the restaurant ID from the HTTP request. It returns a PlaceOr-
derFacadeResult, which consists of a status code, and the PendingOrder, which con-
tains the delivery information and a reference to the selected restaurant and its
menu items:

public class PlaceOrderFacadeResult {

 private int statusCode;
 private PendingOrderDetail pendingOrder;

 public PlaceOrderFacadeResult(
 int statusCode,
 PendingOrderDetail pendingOrder) {
 this.statusCode = statusCode;
 this.pendingOrder = pendingOrder;
 }
…

The status code indicates the outcome of calling the method. A façade method
can often have several expected outcomes, and a status code is a good way to com-
municate the outcome along with the data to display to the caller. PendingOrder-
Detail, which we first saw in section 7.2.1, is a view interface that provides a read-
only view of pending orders and is implemented by the PendingOrder class.

:Browser
:Presentation

Tier

selectRestaurant(restaurantId)

:PlaceOrder
Facade

updateRestaurant(pendingOrderId, restaurantId)

PendingOrder+Restaurant+MenuItems

HTML page

Figure 7.5 Handling the request that selects a restaurant

Implementing the POJO façade 267
 In this example the presentation tier accesses the objects it needs to generate
the response, such as the restaurant and its menu items, by navigating from the
PendingOrder. However, a POJO façade method often returns multiple domain
objects to the presentation tier. For example, the PlaceOrderFacade defines an
updateDeliveryInfo() method, which returns the PendingOrder and a list of avail-
able restaurants. Consequently, façade methods typically return a DTO-like object
that aggregates several detached domain objects.

 We would identify the other POJO façade methods by looking at each transi-
tion between pages in the UI and defining a corresponding POJO façade method.
See this book’s online source code for the complete PlaceOrderFacade.

7.4 Implementing the POJO façade

Once you have identified the methods and defined the POJO façade’s interface, the
next step is to develop the POJO façade class that implements the interface. This
class in our example façade implements the PlaceOrderFacade interface and is
called PlaceOrderFacadeImpl. Each POJO façade method defined by this class is usu-
ally quite simple because it does not contain any significant business logic. Instead,
as figure 7.6 shows, it delegates to domain model classes. It also calls the persistence
framework to detach the domain objects required by the presentation tier.

 A good way to implement a POJO façade’s methods is to use a test-driven
approach that mocks the objects that it calls. This enables you to test only the sim-
ple logic implemented by the façade without worrying about the complex busi-
ness logic implemented by the domain model or, worse, the database. To see how
this is done, let’s implement the updateRestaurant() method, which we identified
earlier in section 7.3.1. We will first write some tests and then write the method.

7.4.1 Writing a test for a POJO façade method

Because we are using test-driven development, we first need to write a test for the
updateRestaurant() method. As figure 7.6 shows, this method calls the PlaceOr-
derService to update the PendingOrder with the selected restaurant. It returns the
PlaceOrderFacade result object, which contains the detached PendingOrder.
Unlike some of the other methods defined by PlaceOrderFacadeImpl, updateRes-
taurant() doesn’t invoke any repositories.

 The updateRestaurant() method returns a PlaceOrderFacadeResult that con-
tains a status code and the detached PendingOrder. The PlaceOrderFacadeImpl
could detach the objects by calling the persistence framework APIs directly. How-
ever, this would complicate development and testing because it would be directly

268 CHAPTER 7

Encapsulating the business logic with a POJO façade
coupled to the persistence framework and the database. A better design, which
simplifies testing, is to encapsulate the detachment logic behind what I call a
result factory.

 The result factory interface in this particular example is called PlaceOrder-
FacadeResultFactory. It defines a make() method that takes a status code and Pend-
ingOrder as parameters. This method detaches the PendingOrder and returns a
PlaceOrderFacadeResult. PlaceOrderFacadeResultFactory provides an easy-to-
mock interface that makes testing the PlaceOrderFacade simpler. It also improves
reusability by decoupling the PlaceOrderFacade from the persistence framework.

 Now that we have figured out how this method works, let’s write a test.
Listing 7.1 shows a test that uses JMock to verify that this method behaves as
expected. The test case class extends MockObjectTestCase and creates mock imple-
mentations of the PlaceOrderService and the PlaceOrderFacadeResultFactory.

public class PlaceOrderFacadeMockTests extends MockObjectTestCase {

 private Mock mockPlaceOrderService;
 private Mock mockResultFactory;

Listing 7.1 PlaceOrderFacadeMockTests

PlaceOrderFacadeResult updateRestaurant(pendingOrderId, restaurantId)
...

PlaceOrderFacadeImpl

Domain

PlaceOrder
Service

PendingOrder Persistence
Framework

Presentation
Tier

PlaceOrderFacadeResult updateRestaurant(pendingOrderId, restaurantId)
...

<<interface>>
PlaceOrderFacade

Figure 7.6 The PlaceOrderFacade and its relationship with the rest of the application

Implementing the POJO façade 269
…

 public void setUp() {
 mockPlaceOrderService =
 new Mock(PlaceOrderService.class);

 mockResultFactory =
 new Mock(PlaceOrderFacadeResultFactory.
bbbbbbbbbb➥ class);

 placeOrderService =
 (PlaceOrderService)
 mockPlaceOrderService.proxy();
 resultFactory =
 (PlaceOrderFacadeResultFactory)
 mockResultFactory.proxy();

 placeOrderFacade =
 new PlaceOrderFacadeImpl(
 placeOrderService,
 resultFactory);
 …
 }

 public void testUpdateRestaurant() throws Exception {
 String restaurantId = "restaurantId";

 PlaceOrderServiceResult
 placeOrderServiceResult
 = new PlaceOrderServiceResult(
 PlaceOrderStatusCodes.OK,
 pendingOrder);

 PlaceOrderFacadeResult
 resultFactoryResult
 = new PlaceOrderFacadeResult(
 PlaceOrderStatusCodes.OK,
 pendingOrder,
 availableRestaurants);

 mockPlaceOrderService
 .expects(once())
 .method("updateRestaurant")
 .with(eq(pendingOrderId),
 eq(restaurantId))
 .will(returnValue(
bbbbbbbb➥ placeOrderServiceResult));

 mockResultFactory
 .expects(once())
 .method("make")

B Creates
mocks

C Creates
façade

D Creates objects
returned by mocks

E Defines expectations
for mocks

270 CHAPTER 7

Encapsulating the business logic with a POJO façade
 .with(eq(PlaceOrderStatusCodes.OK),
 eq(pendingOrder))
 .will(returnValue(
bbbbbbbbbbbb➥ resultFactoryResult));

 PlaceOrderFacadeResult result =
 placeOrderFacade
 .updateRestaurant(pendingOrderId,
 restaurantId);

 assertSame(resultFactoryResult, result);
 }
…

Let’s look at the details:

The setUp() method creates the mock implementations of the RestaurantRepos-
itory, PlaceOrderService, and PlaceOrderFacadeResultFactory classes.

The setUp() method creates the PlaceOrderFacade, passing the mock PlaceOrder-
Service and PlaceOrderFacadeResultFactory to its constructor.

The testUpdateRestaurant() method configures the expectations of each mock
object and the return value of each method. For example, it specifies that the
PlaceOrderService is called once with the same parameters that were passed to
the PlaceOrderFacade and that it should return an UpdateDeliveryResult indicat-
ing a successful outcome.

The test then calls the PlaceOrderFacade.

The test verifies that it returns the result of the PlaceOrderFacadeResultFactory.

The MockObjectTestCase automatically verifies that the mockPlaceOrderService
and mockPlaceOrderFacadeResultFactory are called as expected.

The next step is to write the method.

7.4.2 Implementing updateRestaurant()

In order for this test to compile and run successfully, we have to define the Place-
OrderFacadeImpl class and implement its constructor and the updateRestaurant()
method. The constructor stores its parameters in fields, and the updateRestau-
rant() method calls PlaceOrderService and the PlaceOrderFacadeResultFactory.
Here is an excerpt of the source code for PlaceOrderFacadeImpl:

public class PlaceOrderFacadeImpl implements PlaceOrderFacade {

 private PlaceOrderFacadeResultFactory resultFactory;

E Defines expectations
for mocks

F Calls
façade

G Verifies
result

B

C

D

E

F

G

Implementing the POJO façade 271
 private PlaceOrderService service;

 public PlaceOrderFacadeImpl(
 bbPlaceOrderService service,
bbbbbbPlaceOrderFacadeResultFactory resultFactory) {
 this.service = service;
 this.resultFactory = resultFactory;
 }

 public PlaceOrderFacadeResult updateRestaurant(
 String pendingOrderId, String restaurantId) {
 PlaceOrderServiceResult result = service.updateRestaurant(
 pendingOrderId, restaurantId);
 return resultFactory.make(PlaceOrderStatusCodes.OK, result
 .getPendingOrder());

 }
…
}

The updateRestaurant() method first calls PlaceOrderService.updateRestau-
rant(). It then calls the PlaceOrderFacadeResultFactory to create a return value
containing a SUCCESS status code and the PendingOrder. The other PlaceOrder-
Facade methods are similar to updateRestaurant(). Each one calls the correspond-
ing PlaceOrderService method. Some of these methods also call repositories to
retrieve additional data needed by the presentation tier. For example, update-
DeliveryInfo() calls RestaurantRepository to find the available restaurants.

 PlaceOrderFacadeImpl is a pretty simple class, and so you might be wondering,
why not simplify the design and implement its functionality as part of the Place-
OrderService? One good reason to have a POJO façade is that it enables the
domain model services to focus on the core business logic. They can be developed
independently of the presentation tier because they are not responsible for gath-
ering data for the presentation tier of the domain model services. Another benefit
of using a POJO façade is that it enables the same domain model services to work
with multiple presentation tiers and other kinds of business-tier clients. While
merging the POJO façade and the domain services might make sense for some
applications, many applications will benefit from keeping them separate.

 As well as invoking the domain model services and repositories, a POJO façade
must detach the domain objects that it returns to the presentation tier. To ensure
that the POJO façade is easy to test, the detachment code, which must sometimes
call the persistence framework, is encapsulated within a result factory class.

272 CHAPTER 7

Encapsulating the business logic with a POJO façade
7.5 Implementing a result factory

The third step in the process of implementing a POJO façade is writing the result
factory that is called by the POJO façade to detach the domain objects that it
returns to the presentation tier. In a JDO application, the result factory must call
the JDO detachment APIs, which return detached copies of the persistent objects.
In a Hibernate application, the result factory simply has to make sure the
required objects are loaded because detachment is automatic. In both cases, the
POJO façade must make sure that the object graph contains all of the objects
required by the presentation tier.

 The set of objects that need to be detached is primarily determined by the data
that is displayed by the presentation tier. For example, in the Place Order use case,
the Order page displays data from several objects, including the delivery information
from the PendingOrder, the quantities from the pending order’s line items, and the
menu items from the selected restaurant. Consequently, the PlaceOrderFacade must
return an object graph containing the PendingOrder, its line items, its restaurant, and
its restaurant’s menu items. Figure 7.7 shows the object graph starting from the
PendingOrder that needs to be returned to the presentation tier.

:Pending
Order

:PendingOrder
Lineitem

:Restaurant

:MenuItem

:Coupon

:OpeningHours

:ServiceArea

Figure 7.7 The object graph reachable from PendingOrder

Implementing a result factory 273
The PlaceOrderFacade must return to the presentation tier all of the objects
reachable from the PendingOrder except for the restaurant’s opening hours and
the service area.

 The PlaceOrderFacade uses the PlaceOrderFacadeResultFactory to detach the
persistent objects and create a PlaceOrderFacadeResult object returned by the
façade. As figure 7.8 shows, there are two implementations of this interface: a
Hibernate version and a JDO version.

 The Hibernate version ensures that all the necessary domain objects are
loaded, and the JDO version loads the domain objects and detaches them from
the PersistenceManager. Let’s look at their implementation.

7.5.1 Implementing a Hibernate result factory

The HibernatePlaceOrderFacadeResultFactory is the Hibernate implementation
of the PlaceOrderFacadeResultFactory interface. It makes sure that the Pending-
Order’s line items are loaded, and if the PendingOrder has a restaurant, it also
ensures that the restaurant’s menu items are loaded.

 Earlier we saw that a Hibernate application can force an object or collection to
be loaded by calling Hibernate.initialize(). However, instead of calling that

updateDeliveryInfo()
updateRestaurant()
updateQuantities()
...

PlaceOrder
FacadeImpl

make(statusCode, pendingOrder)

<<interface>>
PlaceOrderFacadeResultFactory

JDO
PlaceOrderFacade

ResultFactory

Hibernate
PlaceOrderFacade

ResultFactory

javax.jdo .hibernateorg
Figure 7.8
Design of the
PlaceOrderFacadeResultFactory

274 CHAPTER 7

Encapsulating the business logic with a POJO façade
method directly, HibernatePlaceOrderFacadeResultFactory calls HibernateTem-
plate.initialize(), which is a convenience method that calls Hibernate.ini-
tialize() and converts HibernateException to a Spring data access exception.
Using the HibernateTemplate simplifies the code and makes testing a lot easier
because it can be mocked. In contrast, Hibernate.initialize() is a static method
and impossible to mock.

 The HibernatePlaceOrderFacadeResultFactory class extends the Spring class
HibernateDaoSupport and implements the PlaceOrderFacadeResultFactory inter-
face:

public class HibernatePlaceOrderFacadeResultFactory extends
 HibernateDaoSupport implements
 PlaceOrderFacadeResultFactory {

 public HibernatePlaceOrderFacadeResultFactory(
 HibernateTemplate hibernateTemplate) {
 setHibernateTemplate(hibernateTemplate);
 }

 public PlaceOrderFacadeResult make(int statusCode,
 PendingOrder pendingOrder) {
 getHibernateTemplate().
 initialize(pendingOrder.
bbbbbbbbbbbbbbbb➥ getLineItems());

 Restaurant restaurant =
 pendingOrder.getRestaurant();
 if (restaurant != null) {
 List menuItems =
 restaurant.getMenuItems();
 getHibernateTemplate().

bbbbbbbbbbb➥ initialize(menuItems);
 }
 return new PlaceOrderFacadeResult(statusCode, pendingOrder);
 }

HibernatePlaceOrderFacadeResultFactory defines a constructor that takes a
HibernateTemplate as a parameter and saves it for later. The make() method ini-
tializes the pending order’s line items and the menu items for its restaurant (if it
has one). Unlike its JDO equivalent, HibernatePlaceOrderFacadeResultFactory
needs to have knowledge of the object structure. This isn’t a problem in this
example since the object structure is so simple, but a factory that detaches a com-
plex object graph could be quite messy because, as we saw earlier, it would need to
contain conditional logic to handle null references and polymorphic references.

Saves HibernateTemplate

Initializes
line items

Initializes optional
menu items

Implementing a result factory 275
7.5.2 Implementing a JDO result factory

Now that you have seen the Hibernate implementation of the PlaceOrderResult-
Factory, let’s look at the JDO implementation. The JDOPlaceOrderFacadeResult-
Factory must call the JDO detached object APIs to detach the PendingOrder and its
related objects. To do this, it must configure the JDO fetch groups to describe the
graph of objects to detach. One option is to add the reference and collection
fields to each class’s default fetch group, as shown in table 7.1

This is certainly the easiest approach, but because default fetch groups also affect
object loading, it will cause the complete graph of object to be loaded each time a
PendingOrder is loaded. This is usually not desirable because loading objects
unnecessarily can impact performance. A better approach is to use either custom
fetch groups or a vendor-specific mechanism such as Kodo JDO’s per-field fetch
configuration mechanism (described in chapter 5). This approach will not affect
object loading elsewhere in the application because only the detachment code
activates the custom fetch groups or uses the vendor-specific mechanism.

 According to the JDO 2.0 specification, adding the following fetch group to the
currently active fetch groups will detach the PendingOrder and its related objects:

<class name="PendingOrder">

 <fetch-group name="PendingOrder.placeOrderFacade">
 <field name="restaurant"/>
 <field name="lineItems"/>
 <field name="coupon"/>
 <field name="restaurant.menuItems"/>
 <field name="lineItems#element.menuItem"/>

 </fetch-group>

</class>

Table 7.1 Configuring the default fetch groups to load the required objects

Class
Fields to add to the
default fetch group

PendingOrder lineItems

restaurant coupon

PendingOrderLineItem menuItem

Restaurant menuItems

276 CHAPTER 7

Encapsulating the business logic with a POJO façade
This fetch group definition lists the names of the fields that reference related
objects that must be eagerly loaded. In addition to specifying fields of the Pending-
Order class, it specifies the menu items of the pending order’s restaurants and the
menuItem of each of the pending order’s line items. Detaching a pending order
when this fetch group is active will result in the JDO implementation detaching
those objects as well.

 At the time of this writing, however, a JDO implementation that supported this
fetch group definition was not available, and in order to have a working example I
used Kodo JDO’s per-field fetch configuration mechanism, which is used for both
eager loading and detachment. To detach the PendingOrder and its related
objects, we need to add the corresponding fields to the Kodo JDO’s FetchConfig-
uration before calling KodoPersistenceManager.detach(), which is Kodo JDO’s
equivalent to PersistenceManager.detachCopy().

 Because the JDOPlaceOrderFacadeResultFactory calls the Kodo JDO APIs, it
must use a Spring JdoTemplate to execute a callback class, which downcasts the
JDO PersistenceManager to KodoPersistenceManager. As a result, the design con-
sists of the classes shown in figure 7.9. JDOPlaceOrderFacadeResultFactory instan-
tiates a KodoJDODetachObjectCallback and executes it using the JdoTemplate.

 KodoJDODetachObjectCallback configures the Kodo FetchConfiguration and
calls the KodoPersistenceManager to detach the PendingOrder. Let’s take a
detailed look at these classes.

make(statusCode, pendingOrder)

<<interface>>
PlaceOrderFacadeResultFactory

JDO
PlaceOrderFacade

ResultFactory

KodoJDODetach
ObjectsCallback

Kodo JDO

JdoCallback

Kodo
Persistence

Manager

Fetch
Configuration

JdoTemplate

Figure 7.9 The design of the JDOPlaceOrderFacadeResultFactory

Implementing a result factory 277
JDOPlaceOrderFacadeResultFactory
The JDOPlaceOrderFacadeResultFactory, which is shown in listing 7.2, is a simple
class. It uses a Spring JdoTemplate to execute the KodoJDODetachObjectCallback. To
completely decouple the code from the object graph that must be detached, we pass
in the names of the relationship fields to detach using dependency injection.

public class JDOPlaceOrderFacadeResultFactory implements
 PlaceOrderFacadeResultFactory {

 private final String[] fieldsToDetach;

 public JDOPlaceOrderFacadeResultFactory(
 JdoTemplate jdoTemplate,
 String[] fieldsToDetach) {
 setJdoTemplate(jdoTemplate);
 this.fieldsToDetach = fieldsToDetach;
 }

 public PlaceOrderFacadeResult make(
 int statusCode,
 PendingOrder pendingOrder) {
 PendingOrder detachedPendingOrder =
 detachPendingOrder(pendingOrder);
 return new PlaceOrderFacadeResult(statusCode,
 detachedPendingOrder);
 }

 private PendingOrder detachPendingOrder(
 PendingOrder pendingOrder) {
 return (PendingOrder) getJdoTemplate()
 .execute(
 new KodoJDODetachObjectCallback(
 pendingOrder,
 fieldsToDetach));
 }

}

JDOPlaceOrderFacadeResultFactory has a constructor that takes a JdoTemplate
and the names of the fields to detach as parameters. It stores the JdoTemplate by
calling setJdoTemplate(), which is provided by its superclass. The detachPending-
Order() method instantiates the KodoJDODetachObjectCallback with the Pending-
Order and field names to detach and passes it to the JdoTemplate.

Listing 7.2 JDOPlaceOrderFacadeResultFactory

278 CHAPTER 7

Encapsulating the business logic with a POJO façade
KodoJDODetachObjectCallback
The KodoJDODetachObjectCallback, which is shown in listing 7.3, is used by the
JDOPlaceOrderResultFactory to detach the PendingOrder. Because it’s a JdoCall-
back, it has a doInJdo() method, which is passed a JDO PersistenceManager by
the JdoTemplate. This method downcasts the PersistenceManager to a KodoPer-
sistenceManager and configures the FetchConfiguration with the specified
fields. After detaching the objects, it undoes the changes it made to the Fetch-
Configuration so that any other callers of the PersistenceManager can use the
default configuration.

public class KodoJDODetachObjectCallback implements JdoCallback {
 private final String[] fields;

 private final Object object;

 KodoJDODetachObjectCallback(Object object, String[] fields) {
 this.object = object;
 this.fields = fields;
 }

 public Object doInJdo(PersistenceManager pm)
 throws JDOException {
 KodoPersistenceManager kodoPM = (KodoPersistenceManager) pm;

 if (object == null)
 return null;
 FetchConfiguration fc = kodoPM.getFetchConfiguration();
 String[] oldFields = fc.getFields();
 if (fields != null) {
 fc.addFields(fields);
 }
 try {
 return (Object) kodoPM.detach(object);
 } finally {
 if (fields != null) {
 fc.clearFields();
 fc.addFields(oldFields);
 }
 }
 }

}

Listing 7.3 KodoJDODetachObjectCallback

Deploying the POJO façade with Spring 279
The KodoJDODetachObjectCallback calls FetchConfiguration.getFields() to get
the set of currently active fields and then adds the specified fields. The finally
clause restores the set of current active fields to its original value.

 At this point you know how to detach Hibernate and JDO objects. Next, let’s
look at how to deploy a POJO façade using the Spring framework.

7.6 Deploying the POJO façade with Spring

In the fairytale of Jack and the Beanstalk, Jack traded his cow for some magic
beans. That fateful decision was the start of a thrilling adventure that included an
encounter with a homicidal giant and eventually led to a life of happiness for Jack
and his mother. Now I’m not promising that using Spring beans will result in life-
long happiness, but they will certainly make development a lot easier. The final
step of implementing a POJO façade is to write the Spring beans that deploy the
POJO façade in Spring’s lightweight container.

 We must write the Spring bean definitions that configure Spring to create the
POJO façade and make it transactional by wrapping it with an AOP interceptor.
The bean definitions describe how the Spring lightweight container should
instantiate the POJO façade and any objects that it requires. Spring’s dependency
injection mechanism passes the required objects as either constructor arguments
or setter arguments. The bean definitions also describe how to apply the AOP
interceptors that make the POJO façade transactional.

 To deploy the PlaceOrderFacade, we must define several kinds of beans. First,
we need to define Spring beans that instantiate the PlaceOrderFacade and the
classes that it needs, such as the PlaceOrderService and repositories. Second, we
must define beans that instantiate Spring classes such as TransactionInterceptor,
and a PlatformTransactionManager that makes the PlaceOrderFacade transac-
tional. Third, we must define Spring beans that instantiate classes that enable the
application to access the database, such as an ORM template class and a persis-
tence framework connection factory. Figure 7.10 shows the beans required to
deploy the PlaceOrderFacade.

 Some of those beans, such as the PlaceOrderFacade, the PlaceOrderService,
and the TransactionInterceptor, are independent of the persistence framework.
Other beans are persistence framework-specific, including the repositories, the
PlaceOrderResultFactory, the PlatformTransactionManager, the ORM template
class, and the connection factory. I begin this section by describing the generic
bean definitions. After that, I will describe the Hibernate-specific and JDO-specific
bean definitions.

280 CHAPTER 7

Encapsulating the business logic with a POJO façade
7.6.1 Generic bean definitions

The generic Spring beans instantiate the PlaceOrderFacade and apply the Trans-
actionInterceptor. They also create the PlaceOrderService. Because both the
PlaceOrderService and the PlaceOrderFacade use constructor injection, Spring
will pass their dependencies to their constructors. The TransactionInterceptor
and BeanNameAutoProxyCreator use setter injection, which means that Spring
passes their dependencies as setter arguments. Listing 7.4 shows the generic
Spring bean definitions.

PlaceOrder
Facade

ORM-Specific
PlaceOrder

ResultFactory

PlaceOrder
Service

ORM-Specific
PendingOrder

Repository

ORM-Specific
Restaurant
Repository

ORM-Specific
Template

ORM-Specific
Connection

Factory

Transaction
Interceptor

ORM-Specific
Platform

Transaction
Manager

APPLICATION
CLASSES

SPRING FRAMEWORK
CLASSES

ORM FRAMEWORK

Presentation
Tier

Figure 7.10 The Spring beans required to deploy the PlaceOrderFacade

Deploying the POJO façade with Spring 281
<beans>

<bean id="PlaceOrderFacade"
BBclass="net.chrisrichardson.foodToGo.pojoFacade.
bbbbb➥ PlaceOrderFacadeImpl">
 <constructor-arg ref="PlaceOrderService"/>
 <constructor-arg ref="RestaurantRepositoryImpl"/>
 <constructor-arg ref="ResultFactory"/>
</bean>

<bean id="PlaceOrderService"
BBclass="net.chrisrichardson.foodToGo.domain.
bbbbb➥ PlaceOrderServiceImpl">
 <constructor-arg ref="RestaurantRepositoryImpl"/>
 <constructor-arg ref="PendingOrderRepositoryImpl"/>
</bean>

<bean id="TransactionInterceptor"
 class="org.springframework.transaction.interceptor.
bbbbb➥ TransactionInterceptor">
 <property name="transactionManager" ref="myTransactionManager"/>
 <property name="transactionAttributeSource">
 BB<value>
BBBBnet.chrisrichardson.foodToGo.pojoFacade.PlaceOrderFacade.
bbbbbbbbBBB➥ *=PROPAGATION_REQUIRED
 BB</value>
 </property>
</bean>

<bean id="BeanNameProxyCreator"
 class="org.springframework.aop.framework.autoproxy.
bbbbbbbb➥ BeanNameAutoProxyCreator">
 <property name="beanNames">
 <list>
 <idref bean="PlaceOrderFacade" />
 </list>
 </property>
 <property name="interceptorNames">
 <list>
 <idref bean="TransactionInterceptor" />
 </list>
 </property>
</bean>

</beans>

Listing 7.4 placeOrderFacade-generic-beans.xml

B

C

D

E

282 CHAPTER 7

Encapsulating the business logic with a POJO façade
Let’s look at the details of each bean definition:

This bean definition creates a PlaceOrderFacade and injects the PlaceOrderService,
and PlaceOrderFacadeResultFactory. The RestaurantRepository and PlaceOrder-
FacadeResultFactory beans are defined later in this section because there are sep-
arate Hibernate and JDO versions.

This bean definition creates a PlaceOrderService and injects the repositories.

This bean definition creates a TransactionInterceptor and injects the Platform-
TransactionManager, which is defined later in this section.

This bean definition defines the BeanNameAutoProxyCreator, which applies the
TransactionInterceptor to all calls to PlaceOrderFacade.

All of these beans (except the BeanNameAutoProxyCreator) depend on persistence
framework-specific classes. For example, the PlaceOrderService must be injected
with the persistence framework-specific implementations of the repositories. Let’s
look at the definition of the JDO-specific Spring beans.

7.6.2 JDO-specific bean definitions

The JDO bean definitions instantiate the JDO implementations of the repositories
and result factory, the JdoTransactionManager, the JdoTemplate, and the Persis-
tenceManagerFactory. Listing 7.5 shows these bean definitions.

<beans>

 <bean id="myTransactionManager"
 class="org.springframework.orm.jdo.JdoTransactionManager">
 <property name="persistenceManagerFactory"
 ref="myPersistenceManagerFactory" />
 </bean>

 <bean id="PendingOrderRepositoryImpl"
 class="net.chrisrichardson.foodToGo.domain.jdo.
bbbbbbbbbbb➥ JDOPendingOrderRepositoryImpl">
 <constructor-arg ref="JdoTemplate" />
 </bean>

 <bean id="RestaurantRepositoryImpl"
 class="net.chrisrichardson.foodToGo.domain.jdo.
bbbbbbbb➥ JDORestaurantRepositoryImpl">
 <constructor-arg ref="JdoTemplate" />
 </bean>

B

c

D

E

Listing 7.5 placeOrderFacade-jdo-beans.xml

B

C

D

Deploying the POJO façade with Spring 283
<bean id="ResultFactory"
 <bean id="ResultFactory"
 class="net.chrisrichardson.foodToGo.pojoFacade.jdo.
bbbbbbbb➥ JDOPlaceOrderFacadeResultFactory">
 <constructor-arg ref="JdoTemplate" />
 <constructor-arg>
 <list>
 <value>
 net.chrisrichardson.foodToGo.domain.PendingOrder.
bbbbbbbbbb➥ restaurant
 </value>
 <value>
 net.chrisrichardson.foodToGo.domain.Restaurant.
bbbbbbbbbb➥ menuItems
 </value>
 <value>
 net.chrisrichardson.foodToGo.domain.PendingOrder.
bbbbbbbbbb➥ lineItems
 </value>
 <value>
 net.chrisrichardson.foodToGo.domain.
bbbbbbbbbb➥ PendingOrderLineItem.menuItem
 </value>
 </list>
 </constructor-arg>
 </bean>

 <bean id="JdoTemplate"
 class="org.springframework.orm.jdo.JdoTemplate">
 <constructor-arg ref="myPersistenceManagerFactory" />
 </bean>

 <bean id="myPersistenceManagerFactory"
 class="org.springframework.orm.jdo.
bbbbbbbbbbbb➥ LocalPersistenceManagerFactoryBean">
 <property name="configLocation">
 <value>classpath:/kodo.properties</value>
 </property>
</bean>
…
</beans>

Here are the details:

myTransactionManager creates a JdoTransactionManager, which is configured to
use the PersistenceManagerFactory and is used by the TransactionInterceptor.

PendingOrderRepositoryImpl creates a JDOPendingOrderRepositoryImpl, which
uses a JdoTemplate.

E

F

G

B

C

284 CHAPTER 7

Encapsulating the business logic with a POJO façade
RestaurantRepositoryImpl creates a JDORestaurantRepositoryImpl, which uses a
JdoTemplate.

PlaceOrderFacadeResultFactory creates a JDOPlaceOrderFacadeResultFactory,
which is injected with the JdoTemplate and the names of the fields to detach.

JdoTemplate creates a Spring JdoTemplate and injects a PersistenceManagerFac-
tory.

myPersistenceManagerFactory creates a Kodo JDO PersistenceManagerFactory
from the properties file kodo.properties.

Let’s now look at the Hibernate Spring beans, which are quite similar to the JDO
Spring beans.

7.6.3 Hibernate bean definitions

The Hibernate bean definitions instantiate the Hibernate implementations of the
repositories and result factory, the HibernateTransactionManager, the Hibernate-
Template, and the SessionFactory. Listing 7.6 shows these bean definitions.

 <beans>

 <bean id="PendingOrderRepositoryImpl"
 class="net.chrisrichardson.foodToGo.domain.hibernate.
bbbbbbbbbb➥ HibernatePendingOrderRepositoryImpl">
 <constructor-arg ref="HibernateTemplate" />
 </bean>

 <bean id="RestaurantRepositoryImpl"
 class="net.chrisrichardson.foodToGo.domain.hibernate.
bbbbbbbbbb➥ HibernateRestaurantRepositoryImpl">
 <constructor-arg ref="HibernateTemplate" />
 </bean>

 <bean id="ResultFactory"
class="net.chrisrichardson.foodToGo.pojoFacade.hibernate.
bbbbbbbb➥ HibernatePlaceOrderFacadeResultFactory">
 <constructor-arg ref="HibernateTemplate" />
 </bean>

 <bean id="HibernateTemplate"
 class="org.springframework.orm.hibernate3.
bbbbbbbbbbb➥ HibernateTemplate">

e

F

G

Listing 7.6 placeOrderFacade-hibernate-beans.xml

B

C

D

E

D

Deploying the POJO façade with Spring 285
 <property name="sessionFactory" ref="mySessionFactory" />
 </bean>

 <bean id="myTransactionManager"
 class="org.springframework.orm.hibernate3.
bbbbbbbbbb➥ HibernateTransactionManager">
 <property name="sessionFactory" ref="mySessionFactory" />
 </bean>

 <bean id="mySessionFactory"
class="org.springframework.orm.hibernate3.

bbbbbbb➥ LocalSessionFactoryBean">
 <property name="mappingLocations">
 <list>
 <value>classpath:net/chrisrichardson/foodToGo/domain/
 ➥ hibernate/PendingOrder.hbm.xml</value>
 …
 </list>
 </property>

 <property name="hibernateProperties">
 <props>
 …
 </props>
 </property>
 </bean>
…
</beans>

Here’s a closer look:

PendingOrderRepository is an instance of HibernatePendingOrderRepository,
which is injected with the HibernateTemplate.

RestaurantRepository is an instance of HibernateRestaurantRepository, which is
injected with the HibernateTemplate.

PlaceOrderFacadeResultFactory is an instance of the HibernatePlaceOrderFacade-
ResultFactory.

HibernateTemplate is an instance of HibernateTemplate, which is injected with a
Hibernate SessionFactory.

The myTransactionManager bean is an instance of HibernateTransactionManager,
which is configured to use the SessionFactory.

mySessionFactory creates a Hibernate SessionFactory using several mapping
files, including PendingOrder.hbm.xml.

F

G

B

C

D

E

F

G

286 CHAPTER 7

Encapsulating the business logic with a POJO façade
As you can see, when using the Spring framework you only need to define a few
Spring beans in order to make a POJO façade transactional and integrated with
the persistence framework. The only drawback is that the Spring bean definitions
can be verbose, especially when compared with EJB 3 annotations. This is, how-
ever, an insignificant price to pay for all of the benefits of Spring.

7.7 Summary

The traditional approach of encapsulating the business logic in a J2EE application
using the Session Façade and DTO patterns has numerous drawbacks. It couples
the business logic to the EJB container, which slows down development and test-
ing. It is also time consuming and tedious to develop and maintain the DTOs and
the code that creates them.

 For many applications, a much better approach is to encapsulate the business
logic with a POJO façade. The POJO façade handles requests by calling the under-
lying domain model classes. The POJO façade is deployed in a lightweight con-
tainer such as Spring and uses AOP interceptors to manage transactions,
persistence framework connections, and security. Development and testing is
faster and easier since the POJO façade can run outside the application server. In
addition, because the POJO façade returns data using detached domain objects,
the only DTOs that need to be written are those that aggregate domain objects.
Another benefit is that a POJO façade can be tested with a simple set of tests that
use mock objects for the domain objects that it calls.

 In the next chapter, we will look at the Exposed Domain Model pattern, which
is another lightweight alternative to the Session Façade pattern.

Part 3

Variations

Part 2 described one effective way to design the business and database access
tiers. In part 3, you will learn about other approaches. Chapter 8 describes how
you can dispense with the façade that encapsulates the business logic. Although
exposing the domain model to the presentation tier might sound like heresy,
doing so has its benefits. There is less code to write and maintain. It also avoids
some of the potential problems with using detached objects. But as you will dis-
cover, in order to use this approach you must solve some tricky database connec-
tion and transaction management issues.

I’m a great fan of using object-oriented design and ORM frameworks. But some-
times this approach doesn’t make sense. In chapter 9 you will learn when you
should consider implementing the business logic using a procedural design and
accessing the database using iBATIS. This chapter describes how to develop a pro-
cedural business logic starting from a use case and how to structure it in a way that
makes it easier to maintain. You will learn how to access the database using
Spring’s iBATIS support classes.

Dissatisfaction with EJB motivated the Java community to adopt alternative
frameworks such as Spring, Hibernate, and JDO. In response, EJB has evolved and
embraced many POJO and lightweight framework concepts. Chapter 10 examines
EJB 3 and compares it to JDO, Hibernate, and Spring. You will learn about the ben-
efits and drawbacks of EJB 3. This chapter describes how to use EJB 3 to persist the
domain model developed earlier in chapter 2 and exposes some significant limita-
tions. It also looks at how to implement the session façade developed in chapter 7
as an EJB 3 session bean. You will learn how to use EJB 3 dependency injection to
assemble an application. This chapter also describes how to integrate EJB 3 depen-
dency injection with Spring to enable the injection of POJOs.

Using an exposed
domain model
This chapter covers
■ Implementing an exposed domain model
■ Managing transactions with Spring AOP
■ Managing database connections with a servlet filter
289

290 CHAPTER 8

Using an exposed domain model
In the previous chapter, you saw how encapsulating the business logic with a POJO
façade has several benefits, including ease of development and improved main-
tainability. However, one problem with a POJO façade is that the code that
detaches the domain objects returned to the presentation tier is error-prone.
When you’re making changes to the presentation tier, it is quite easy for the
detachment code and the presentation tier to get out of sync and for the POJO
façade to only return some of the objects required by the presentation tier. This
can cause subtle bugs that can only be detected by thorough testing.

 An alternative approach that avoids this problem is to use the Exposed
Domain Model pattern, which is also known as the Open Session in View pattern
[OpenSessionInView] or the Open PersistenceManager in View pattern. This pattern
exposes the domain model to the presentation tier. The presentation tier calls the
domain services and repositories directly without going through a façade. It also
accesses the persistent domain objects, which means that as it navigates the object
graph, the persistence framework will lazily load any required objects. The busi-
ness tier is simpler and less error-prone because it does not have to detach objects.
However, while this approach avoids the problems of using detached domain
objects, some tricky design issues arise from how transactions, persistence frame-
works, and the servlet API interact.

 In this chapter, you will learn how to solve those design issues for both JDO and
Hibernate. We describe how to implement business logic that has an exposed
domain model and show you how to use Spring AOP to manage transactions and
persistence framework connections. You’ll also learn about the drawbacks of
using an exposed domain model and when it is not the best solution. Once again,
we’ll use the business logic for the Place Order use case as an example.

8.1 Overview of the Exposed Domain Model pattern

It took me a while to accept the value of the Exposed Domain Model pattern. The
first time I heard about this design technique my instant reaction was, “It can’t be
right! You must use a façade.” I had a similar reaction the second and third times.
I had become accustomed to encapsulating the business logic with either a session
façade or a POJO façade. Eventually, this approach started to make sense. After all,
if the presentation tier and business tiers are running in the same machine, then
the cost of calls between the tiers is negligible. We do not need to be constrained
by a design approach whose main motivation was to minimize the overhead of
remote calls. We can eliminate the façade, which is just a middleman, and write
less code and not worry about detaching objects. Let’s see how this pattern works
and why you would want to use it.

Overview of the Exposed Domain Model pattern 291
8.1.1 Applying the Exposed Domain Model pattern

In a design based on this approach, the business tier consists of just the domain
model, which is called directly by the presentation tier. The presentation tier calls
domain services to update the domain objects, and repositories to query the data-
base. It gets the data to display directly from the persistent domain entities and value
objects. For example, if the presentation tier for the Place Order use case is based
on the Model–View-Controller (MVC) pattern [Buschmann 1996], then the servlets
(the controllers) handle requests by calling the PlaceOrderService and the Res-
taurantRepository (the model), and the JSP pages (the views) generate the
responses using domain objects, such as PendingOrder and Restaurant. Presenta-
tion tiers that use a web framework such as Struts [Husted 2002], JavaServer Faces
[Mann 2005], Spring MVC [Walls 2005], or Tap-
estry [Tapestry] would interact with the domain
model in a similar way. The controllers invoke the
services and repositories, and the view compo-
nents access the domain objects.

 Because the view components can cause per-
sistent objects to be loaded as they navigate rela-
tionships, the JDO PersistenceManager or
Hibernate Session must remain open while the
presentation tier handles the request. Conse-
quently, the PersistenceManager or Session must
be managed by the presentation tier instead of by
an AOP interceptor in the business tier. The pre-
sentation tier can accomplish this by using a serv-
let filter, which is a web component that intercepts
requests before the servlets and JSP pages are
invoked. The servlet filter opens a Persistence-
Manager or Session, invokes the servlets and JSP
pages, and closes PersistenceManager or Session.

 To see how this pattern works, let’s consider
how to apply this pattern when writing the code
to handle the entry of the delivery information
in the Place Order use case. The user enters the
delivery information using the form shown in
figure 8.1. The application then validates the
delivery information and displays a list of avail-
able restaurants, as shown in figure 8.2.

Delivery Info

100 Some streetStreet1:

Street2:

AnytownCity:

CAState:

94567Zip:

Next

8/14/04Date:

7 20 pmTime:

Select Restaurant

TypeName

IndianAjanta

Description

Fine Indian dining

PizzaXYZ Pizza Excellent Pizza

...

Next

Figure 8.2 Restaurant List screen

Figure 8.1 Delivery Info screen

292 CHAPTER 8

Using an exposed domain model
 Figure 8.3 shows the presentation and business tier components that are
responsible for processing the submission of the form and displaying the list of
available restaurants. The presentation tier consists of the servlet filter, which
opens and closes the JDO PersistenceManager or Hibernate Session; the Update-
DeliveryInfoServlet, which handles the form submission; and the restaurants.jsp
JSP page, which displays the list of available restaurants. The business logic con-
sists of the domain model classes that we developed in chapter 3.

Spring TransactionInterceptor

updateDeliveryInfo()

PlaceOrder
Service

service()

<<servlet>>
UpdateDelivery

InfoServlet <<jsp>>
restaurants.jsp

findOrCreatePendingOrder()

PendingOrderRepository

findAvailableRestaurants()
isRestaurantAvailable()
...

RestaurantRepository

updateDeliveryInfo()
getDeliveryInfo()
...

PendingOrder

getName()
...

Restaurant

Presentation
Tier

Business Logic

Servlet Filter
Manages Hibernate
Session or JDO
PersistenceManager

Figure 8.3 An example of the presentation tier accessing the domain objects directly

Overview of the Exposed Domain Model pattern 293
The servlet and JSP page call the domain model objects directly. UpdateDelivery-
InfoServlet calls PlaceOrderService to update the PendingOrder and calls Res-
taurantRepository to retrieve the list of available restaurants. It passes the
PendingOrder and the restaurants to the JSP page restaurants.jsp, which uses them
to generate the HTML page that displays the available restaurants.

 In this design, transactions are managed by a Spring TransactionInterceptor,
which intercepts calls to the PlaceOrderService, but another option is to manage
transactions using a servlet filter. In section 8.3, we will explain the benefits and
drawbacks of these two approaches to transaction management. But first let’s look
at the overall benefits and drawbacks of using the Exposed Domain Model pattern.

8.1.2 Benefits and drawbacks of this pattern

The Exposed Domain Model pattern has several benefits and drawbacks:

■ Faster development—An important benefit of this pattern is that it accelerates
development. There is less code to write because the business tier does not
contain façades or error-prone detachment logic. Development is also faster
because, unlike an EJB session façade, the business logic uses POJOs and can
be developed and tested outside the application server.

■ Potentially eliminates the need for an EJB container—Many applications use an
EJB container only because they encapsulate the business logic with session
façade EJBs. Consequently, this pattern potentially eliminates the need to
use an EJB container.

■ Less encapsulation—One problem with this pattern is the lack of encapsula-
tion. Because there isn’t a façade to clearly define the API between the pre-
sentation and business logic, it is quite easy for business logic to creep into
the presentation tier. Consequently, developers using this design approach
must periodically review and refactor their code to ensure that the business
logic and presentation logic are kept separate. Furthermore, as with the
POJO façade approach described in chapter 7, the presentation tier has
access to the domain objects. It could, for example, update them directly
without going via a domain service. There is also a greater chance of
changes to the business logic impacting the presentation tier. Luckily, you
can reduce the risk of these problems occurring by encapsulating the
domain objects with view interfaces and adapters.

■ More difficult to optimize the business tier—Ideally, we should be able to opti-
mize the performance of the business and persistence tiers without worry-
ing about the presentation tier. But optimizing those tiers in isolation can

294 CHAPTER 8

Using an exposed domain model
be difficult to do when using this pattern. Because the presentation tier
freely accesses the domain objects, the interactions between the tiers are
less clearly defined and finer-grained. Either you can optimize each fine-
grained method in isolation, which provides a lot less opportunity to
improve performance, or you have to understand the design of the presen-
tation tier, which complicates the performance-tuning task.

■ More error handling in JSP pages—Another drawback of exposing the domain
model is that JSP pages might have to contain additional code to handle
exceptions thrown by domain model classes. In a façade-based design, the
façade and servlets handle all exceptions. The JSP pages display the data
contained in DTOs or detached objects whose methods are all simple get-
ters (which access fields and do not throw exceptions). When using the
Exposed Domain Model pattern, a JSP page must be prepared to handle any
exceptions that are thrown by the domain objects that it invokes.

■ No support for remote access—The business tier must expose a coarse-grained
API in order to support remote clients efficiently. It must also return detached
objects because it does not make sense to the remote client to use lazy load-
ing. Consequently, it’s not possible for an exposed domain model to support
remote clients. The interface is too fine-grained and the objects are never
detached. If your application must support remote clients, then you must
encapsulate the business logic with either a POJO façade or an EJB façade.

The two ways in which you can manage transactions when using this pattern have
other potential drawbacks. But first, let's look at when to use this pattern.

8.1.3 When to use the Exposed Domain Model pattern

Despite these drawbacks, the Exposed Domain Model pattern is a good way to
design certain JDO and Hibernate applications. You should consider using an
exposed domain model when:

■ The business logic’s client can manage the persistent framework connection.

■ The business logic does not need to be accessed remotely.

You also need to consider the potentially tricky transaction management issues
that are described in section 8.3. But before getting to that, let’s first look at the
details of managing connections in a Spring application.

Managing connections using a Spring filter 295
8.2 Managing connections using a Spring filter

Lazy loading requires the persistence framework connection—JDO Persistence-
Manager or Hibernate Session—used to load the root object to remain open. When
the application traverses a relationship to an unloaded object, the persistence
framework uses that connection to load it. Consequently, when using the Exposed
Domain Model pattern the application must keep the persistence framework con-
nection open while handling a request in order to allow the view components to
load objects lazily. We have seen that a good way to accomplish this is to use a serv-
let filter, which intercepts requests and opens the connection, executes the servlet
and the JSP page, and closes the connection. Figure 8.4 shows how a request is han-
dled in an application that uses a servlet filter to manage connections.

:Filter
:Persistence
Framework

:Web
Container

doFilter()

getConnection()

:Servlet :Domain
Object

service()

:JSP

<<forward>>

closeConnection()

Figure 8.4 Using a servlet filter to handle connections

296 CHAPTER 8

Using an exposed domain model
The sequence of events is as follows:

1 The web container begins the handling of a request by calling a servlet filter.

2 The servlet filter calls a persistence framework API to open a connection.

3 The servlet filter invokes the servlet such as the PlaceOrderService.

4 The servlet invokes the domain objects.

5 The servlet forwards the request to a JSP page.

6 The JSP page generates the response using the domain objects passed by
the servlet.

7 The servlet filter closes the connection.

Using the servlet filter to manage connections has a number of benefits. The serv-
let filter provides a robust way of managing connections because it uses a try/
finally block to ensure that the connection is closed. Also, it is reusable because
the same filter can be used by multiple applications. Finally, the servlet filter is
used declaratively by specifying the requests that it is applied to in the web appli-
cations deployment descriptor. The developer doesn’t have to remember to write
code in order to use it.

 You could implement the filter yourself, but it’s a lot easier to use the filters
provided by the Spring framework. It provides an OpenSessionInViewFilter,
which is a servlet filter that manages a Hibernate Session, and an OpenPersis-
tenceManagerInViewFilter, which manages a JDO PersistenceManager. Each filter
binds the connection object to the executing thread, which makes it available to
the HibernateTemplate and JdoTemplate classes used by the repositories.

 The servlet filter is a generic way to manage persistence framework connec-
tions, which works in any servlet container. Some web application frameworks
have other ways of implementing the same mechanism. For example, Spring Web
MVC, which is a web application framework for developing presentation tiers, pro-
vides the OpenSessionInViewInterceptor, which is an AOP interceptor that wraps
Spring’s web components. Even though they differ in the details, it is important to
remember that the goal is to keep the Session or PersistenceManager open while
the view components generate the response.

8.3 Managing transactions

In addition to managing the persistence framework connection, an application
must manage transactions in order to ensure atomic and consistent updates. An
EJB-based session façade would most likely use container-managed transactions,

Managing transactions 297
and a POJO façade would be wrapped with a Spring TransactionInterceptor.
However, since this design does not have a façade, it must use another approach
to transaction management, which turns out to be a tricky problem.

 There are two ways to manage transactions. One option is to manage transac-
tions in the presentation tier using a servlet filter. The other option is to manage
transactions using a Spring AOP interceptor around the domain model services.
Both approaches have their drawbacks, but as you will discover, using an AOP
interceptor is the less problematic of the two. In this section you will learn some of
the ugly details of how the transactions interact with the presentation tier and the
persistence framework.

8.3.1 Managing transactions in the presentation tier

When using this approach, a servlet filter begins the transaction, invokes the serv-
lets and JSP pages, and commits the transaction. Because Spring does not provide
such a filter, you must write your own. You could, for example, write a single cus-
tom filter that manages both transactions and connections. Alternatively, you
could implement a transaction management filter that works with Spring’s
OpenSessionInViewFilter or OpenPersistenceManagerInViewFilter. Figure 8.5
shows how the various classes collaborate in a design that uses the latter approach.

:Connection
Filter

:Persistence
Framework

:Web
Container

doFilter ()
open()

:Servlet :PlaceOrder
Service

doFilter ()

service ()

:JSP

<<forward>>

close()

:Transaction
Filter

:PendingOrder

beginTxn ()

commitTxn()

getDeliveryAddress()

Presentation Tier Business Tier Persistence
Tier

updateDeliveryInfo()

Figure 8.5 Managing transactions with a servlet filter

298 CHAPTER 8

Using an exposed domain model
The sequence of events is as follows:

1 The web container invokes the connection filter (OpenSessionInViewFil-
ter or OpenPersistenceManagerInViewFilter).

2 The connection filter, which manages connections, calls the persistence
framework to open the connection.

3 The connection filter calls the transaction management filter.

4 The transaction management filter begins a transaction.

5 The transaction management filter calls the servlet.

6 The servlet invokes the PlaceOrderService.

7 The PlaceOrderService is invoked and updates the pending order.

8 The servlet forwards the request to the JSP page.

9 The JSP uses the domain objects such as the PendingOrder to generate the
response.

10 The transaction management filter commits a transaction.

11 The connection filter calls the persistence framework to close the connec-
tion.

This design is extremely simple. The filters manage connections and ensure that
the servlet and JSP pages execute within a transaction. In addition, filters can be
used with both local transactions and JTA transactions. But one problem with
managing transactions in the presentation tier is that handling transaction roll-
backs and retries is quite tricky.

Handling transaction retries
In chapter 12, we will see that an application must sometimes roll back and retry a
transaction if, for example, a deadlock or an optimistic locking error occurs. The
problem with trying to roll back a transaction in the presentation tier is that it is
not always possible to undo the side effects of the servlets and JSP pages that were
executed as part of the transaction. For example, to roll back a transaction the
presentation tier must reset the HttpServletResponse and clear any output gener-
ated by any JSP pages. To guarantee that this can be done, the application must
buffer the output of the JSP pages to ensure that none of it is sent back to the
browser, which increases the application’s memory usage.

 You must also solve the problem of servlet APIs that can only be called once.
For example, the input stream of a ServletRequest can be read only once, which

Managing transactions 299
makes retrying a transaction difficult. To work around this problem, you will need
to write extra presentation-tier code.

 An even trickier problem to solve is undoing changes made to the HttpSession
when the transaction is rolled back. For example, after calling PlaceOrderSer-
vice.updateDeliveryInfo() for the first time, the UpdateDeliveryServlet will
store the ID of the newly created PendingOrder in the HttpSession. If the transac-
tion is rolled back, the HttpSession will contain the ID of a nonexistent order,
which will then be passed to the PlaceOrderService when the transaction is
retried. You will have to write yet more code in either the presentation tier or busi-
ness tier to solve these kinds of problems.

 It’s certainly possible to work around these problems by writing extra code. But
can you be confident that it works? Rollbacks happen relatively infrequently and
writing tests for the rollback scenarios can be difficult, so there is a pretty good
chance that bugs will lurk in the code.

Benefits and drawbacks of managing transactions in the presentation tier
Using a servlet filter to manage transactions has these benefits:

■ Enables the presentation tier to have a consistent view of the database—The servlets
and JSP pages execute with a single transaction, which can enable them to
have a consistent view of the database.

■ Supports both JTA and local transactions—An application can use either local
transactions or JTA transactions by configuring filters appropriately.

It has these drawbacks:

■ Overhead of buffering the response—In order to be able to roll back the transac-
tion, the output of the JSP pages must be buffered until the transaction
ends, which increases the application’s memory usage.

■ Complexity of writing presentation tier code that supports transaction retries—It can
be difficult to develop and test presentation-tier code that supports transac-
tion rollbacks and retries.

Because of these problems, my preference is to manage transactions in the busi-
ness tier. However, this approach also has its drawbacks, particularly in a Hiber-
nate application.

8.3.2 Managing transactions in the business tier

For many applications, a much better approach is to manage transactions in the
business tier by using a Spring TransactionInterceptor around the domain

300 CHAPTER 8

Using an exposed domain model
model services that are called by the presentation tier. The interceptor begins a
transaction when a domain model service is invoked and commits the transaction
when it returns. The interceptor might also roll back a transaction if an exception
is thrown. Figure 8.6 shows how the various classes collaborate in a design that
uses this approach.

 The sequence of events is as follows:

1 The web container invokes the connection filter.

2 The connection filter calls the persistence framework to open the connec-
tion.

3 The filter calls the servlet.

4 The servlet invokes the PlaceOrderService.

5 The TransactionInterceptor begins the transaction.

6 The PlaceOrderService is invoked and updates the PendingOrder.

7 The TransactionInterceptor commits the transaction.

8 The servlet forwards the request to the JSP page.

9 The JSP uses the domain objects such as the PendingOrder to generate the
response.

10 The filter calls the persistence framework to close the connection.

:Connection
Filter

:Persistence
Framework

:Web
Container

doFilter()
open()

:Servlet :PlaceOrder
Service

service()
updateDeliveryInfo()

:JSP

<<forward>>

getDeliveryAddress()

close()

:Transaction
Interceptor

serviceMethod()

:PendingOrder

beginTxn()

commitTxn()

Presentation Tier Business Tier Persistence
Tier

Figure 8.6 Managing transactions with an AOP interceptor around the domain model services

Managing transactions 301
In this design, the domain model service retrieves and updates objects within a
transaction. After the transaction commits, the presentation tier navigates the
object’s graph, which can cause other objects to be loaded lazily. In order for this
to work, the persistence framework must support what are called nontransac-
tional reads.

Loading persistent objects outside of a transaction
One key assumption of this design is that the persistence framework allows an
application to access persistent objects outside of a transaction, which are also
known as nontransactional reads. For example, when a JSP page generates the
HTML to display a PendingOrder, it must access the pending order’s fields and
traverse relationships to other objects, such as its line items. Because the Transac-
tionInterceptor committed the transaction when the PlaceOrderService

returned, the persistence framework must allow the JSP page to access the domain
objects outside of the transaction, lazily loading them, if necessary.

 Nontransactional reads are an optional JDO feature that is supported by most
JDO implementations. When nontransactional reads are enabled, the application
can perform queries and navigations outside of a transaction. The JDO implemen-
tation accesses the database using short database transactions and caches the object
graph so that subsequent field accesses and navigations are fast. An application
enables nontransactional reads by either creating a PersistenceManagerFactory
with the javax.jdo.option.NontransactionalRead property set to true or calling
setNontransactionalRead(true) on the PersistenceManagerFactory or the Trans-
action interface.

 Hibernate also supports nontransactional reads. A Hibernate application can
perform queries and navigations without beginning a transaction. Hibernate will
retrieve objects from the database and cache them. No special configuration is
necessary.

Using JTA transactions
This approach works with local JDO and Hibernate transactions. Moreover, a
Hibernate application can use JTA transactions because Spring ensures that the
Hibernate Session participates in the transaction. Spring arranges for any newly
created or updated objects in the Hibernate Session to be written back to the
database before the JTA transaction commit. Unfortunately, Spring does not offer
a similar feature for JDO. A JDO PersistenceManager can only participate in a JTA
transaction if it is opened when the transaction is active. This means that a JDO
application that uses JTA transactions must use a POJO façade.

302 CHAPTER 8

Using an exposed domain model
Retrying transactions
Transactions that are rolled back because of a recoverable error such as an optimis-
tic locking failure should be retried. A convenient way to automatically retry a trans-
action is to use an AOP interceptor that catches exceptions that indicate recoverable
errors and then retries the transaction. Figure 8.7 shows what happens when a trans-
action is retried. In this design, the PlaceOrderService is wrapped with the Trans-
actionRetryInterceptor, which is a custom AOP interceptor that is described in
more detail in chapter 12, and the regular Spring TransactionInterceptor.

:Persistence
Framework

:Servlet :PlaceOrder
Service

service()

updateDeliveryInfo()

:Transaction
Interceptor

serviceMethod()

beginTxn()

commitTxn()

:Transaction
RetryInterceptor

updateDeliveryInfo()

serviceMethod()

beginTxn()
updateDeliveryInfo()

rollbackTxn()

Figure 8.7 Retrying a transaction with an AOP interceptor

Managing transactions 303
The sequence of events is as follows:

1 The servlet calls the TransactionRetryInterceptor.

2 The TransactionRetryInterceptor calls the TransactionInterceptor.

3 The TransactionInterceptor begins a transaction.

4 The TransactionInterceptor calls the PlaceOrderService.

5 The PlaceOrderService throws an exception.

6 The TransactionInterceptor catches the exception and rolls back the
transaction.

7 The TransactionRetryInterceptor catches the exception rethrown by the
TransactionInterceptor and calls the TransactionInterceptor.

The second time around, the call to PlaceOrderService via the TransactionIn-
terceptor succeeds.

 Using this interceptor is straightforward in a JDO application because the JDO
specification allows a PersistenceManager to be reused after an exception is
thrown. However, retrying a transaction is a lot more difficult in a Hibernate appli-
cation because the Hibernate documentation states that the application must
close the existing Session and open a new one if Hibernate throws an exception.

 One solution to this limitation of Hibernate is to use the OpenSessionInView-
Filter in a mode that uses a separate Session for each transaction and data access
operation. This mode, which is known as the deferred close method, is enabled by
setting the singleSession property of the OpenSessionInViewFilter to false.
Each time a transaction is retried a new Session will be opened, which avoids the
problem of Session reuse. Any lazy loading that occurs after the transaction com-
mits will use the Session that was opened at the start of the transaction. The
OpenSessionInViewFilter closes all sessions prior to returning. One drawback
with this approach is that each call to a repository outside of the transaction will
use its own Session, which can be inefficient. In addition to using extra database
connections, it will bypass any session-level caching and use extra database
accesses. You can also end up with objects belonging to multiple sessions, which
can sometimes be confusing.

 An alternative approach is to disregard the advice in the Hibernate documen-
tation and to continue to reuse the Session. Spring’s HibernateTransactionMan-
ager automatically calls Session.clear() when a transaction is rolled back. In the
current version of Hibernate, this method clears the session-level cache and
ensures that the Session is in a pristine state at the start of the next transaction.

304 CHAPTER 8

Using an exposed domain model
The disadvantage of this approach is that a future version of Hibernate could
behave differently and break your application. So beware!

Benefits and drawbacks of managing transactions in the business tier
The main benefit of managing transactions in the business tier is that it simplifies
the presentation tier. You don’t need to write presentation logic that supports
retries and buffers the response. However, there are the following drawbacks:

■ Retrying transactions with Hibernate is difficult—As we described earlier, retry-
ing transactions in a Hibernate application is tricky. Neither of the options
we’ve outlined is ideal. Using multiple sessions per request can be inefficient,
and relying on Session.clear() to reinitialize the session is a little risky.

■ There is a lack of transactional consistency—Because a JSP page accesses lazily
loaded objects outside of the transaction, it could potentially get an incon-
sistent view of the database. See chapter 12 for an in-depth discussion of
transaction isolation levels.

■ Using JTA transactions in a JDO application isn’t possible—As we explained ear-
lier, a JDO PersistenceManager cannot participate in a JTA transaction
because it is opened before the transaction begins.

That’s it! We have reached the end of a section that covers a fairly difficult topic.
As you’ve learned, there are several tricky issues that you must resolve when using
the Exposed Domain Model pattern. When using this pattern, neither Hibernate
nor the servlet API handle transactions retries as well as we would like. However,
despite these drawbacks it is worthy of consideration for some applications. Let’s
look at an example.

8.4 An example of the Exposed Domain Model pattern

In this section we’ll dive into the details of implementing the Place Order use case
with the Exposed Domain Model pattern. You will learn how to implement this pat-
tern with Spring, JDO, and Hibernate. The design, which is shown in figure 8.8,
consists of the following components:

■ Servlets and JSP pages that handle HTTP requests and generate responses by
calling the domain model

■ A Spring servlet filter that manages persistence framework connections

■ A Spring TransactionInterceptor, which wraps the PlaceOrderService and
manages transactions with the PlatformTransactionManager

An example of the Exposed Domain Model pattern 305
■ A Spring PlatformTransactionManager, which manages transactions using
the JDO or Hibernate transaction API

■ A TransactionRetryInterceptor, which is a custom Spring AOP interceptor
that automatically retries a transaction if a database concurrency error
occurs

■ The domain model-based business logic

As you can see, Spring implements the majority of the transaction and connection
management logic, including the TransactionInterceptor and the servlet filter
for managing persistence framework connections. The only custom infrastructure
code is the TransactionRetryInterceptor.

 Let’s look at the details. Each servlet handles a request by first invoking the
PlaceOrderService and calling other domain model classes, such as repositories,
to get the data to display. It then forwards the request to a JSP page, which it

Spring

Persistence Framework

JSP Page

Domain

Pending
Order

Restaurant

PendingOrder
Repository

Restaurant
Repository

Servlet

updateDeliveryInfo()
updateRestaurant()
...

PlaceOrderService

Connection open()

Connection
Factory

close()

Connection
begin()
commit()

Transaction

Hibernate/JDO
Transaction

Manager

Transaction
Interceptor

Transaction
Retry

Interceptor

OpenSession
InViewFilter

OpenPersistence
Manager

InViewFilter

Figure 8.8 Exposed business logic for the Place Order use case

306 CHAPTER 8

Using an exposed domain model
chooses based on the outcome of calling PlaceOrderService. A JSP page generates
the response using the domain objects passed to them by the servlets.

 Persistence framework connections are managed by Spring’s OpenSessionIn-
ViewFilter and OpenPersistenceManagerInViewFilter classes. Transactions are
managed by Spring’s TransactionInterceptor, which uses a persistence frame-
work-specific PlatformTransactionManager that invokes the persistence frame-
work’s transaction management APIs. The Hibernate version uses the
HibernateTransactionManager, which calls the Hibernate Transaction API, and the
JDO version uses JdoTransactionManager, which calls the JDO Transaction API.
TransactionRetryInterceptor is a custom interceptor that automatically retries a
transaction that was rolled back because of a database concurrency failure and is
described in chapter 12.

 In the rest of this section, let’s look at the servlets, the JSP pages, and the con-
figuration of the PlaceOrderService Spring bean, which are the same regardless
of which persistence framework is used. After that, in the following sections we
describe the persistence framework-specific parts of the design.

8.4.1 Servlet design

The servlets handle HTTP requests from the user’s browser, invoke the business
logic, and forward requests to a JSP page, which generates the response. To see how
these servlets work, let’s look at UpdateDeliveryInfoServlet, which handles the sub-
mission of the delivery information form. Listing 8.1 shows the source code for
UpdateDeliveryInfoServlet. The servlet gets the PlaceOrderService from the
Spring WebApplicationContext, a Spring bean factory for the web application.
WebApplicationContext instantiates PlaceOrderService, injects any dependencies,
and wraps it with the AOP interceptors that manage transactions. The servlet obtains
a RestaurantRepository from the WebApplicationContext. The servlet calls Place-
OrderService and RestaurantRepository and forwards the request to a JSP page.

public class UpdateDeliveryInfoServlet extends HttpServlet {

 private ServletConfig servletConfig;
 private PlaceOrderService service;
bbprivate RestaurantRepository restaurantRepository;
 public void init(ServletConfig servletConfig)
 throws ServletException {
 super.init(servletConfig);
 this.servletConfig = servletConfig;

Listing 8.1 UpdateDeliveryInfoServlet

An example of the Exposed Domain Model pattern 307
 ServletContext context =
 servletConfig.getServletContext();
 ApplicationContext appContext =
 WebApplicationContextUtils
 .getWebApplicationContext(context);

 service = (PlaceOrderService) appContext.getBean(
 "PlaceOrderService",
 PlaceOrderService.class);
bbbbbb...
 }

 protected void service(
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 if (!validateParameters(request,
 response))
 return;

 Address deliveryAddress = makeDeliveryAddress(request);
 Date deliveryTime = makeDeliveryTime(request);

 HttpSession session =
 request.getSession();
 String pendingOrderId =
 (String) session.
bbbbbbbbbbb➥ getAttribute("pendingOrderId");

 PlaceOrderServiceResult result =
 service.updateDeliveryInfo(
 pendingOrderId,
 deliveryAddress,
 deliveryTime);

 PendingOrder pendingOrder = result.getPendingOrder();

 session.setAttribute(
 "pendingOrderId",
 pendingOrder.getId();

 switch (result.getResult()) {
 case PendingOrder.OK :
 displayAvailableRestaurants(
 request,
 response,
 deliveryAddress,
 deliveryTime,

B Creates
PlaceOrderService

C Validates
parameters

D Gets pending
order ID

E Invokes
PlaceOrderService

F Stores pending
order ID

G Determines JSP
page to invoke

308 CHAPTER 8

Using an exposed domain model
 session,
 pendingOrder);
 break;
 …
 }

 }

 private void displayAvailableRestaurants(
 HttpServletRequest request,
 HttpServletResponse response,
 Address deliveryAddress,
 Date deliveryTime,
 HttpSession session,
 PendingOrder pendingOrder)

 throws ServletException, IOException {

 List restaurants =
 restaurantRepository.findAvailableRestaurants(
 deliveryAddress,
 deliveryTime);

 request.setAttribute("restaurants",
 restaurants);
 request.setAttribute("pendingOrder", pendingOrder);
 request
 .getRequestDispatcher("/domain/availableRestaurants.jsp")
 .forward(request, response);
 …
 }

 private boolean validateParameters(
 HttpServletRequest request,
 HttpServletResponse response) {
 …
 }

 private Date makeDeliveryTime(HttpServletRequest request) {
bb…
 }

 private Address
 makeDeliveryAddress(HttpServletRequest request) {
 …
 }
}

H Passes data
to display

I Forwards
request

An example of the Exposed Domain Model pattern 309
Let’s look at the details of the servlet:

The servlet’s init() method creates PlaceOrderService and RestaurantReposi-
tory.

The servlet validates the parameters and creates the delivery address and delivery
time objects.

It gets the pending order ID from the HttpSession.

The servlet invokes PlaceOrderService.updateDeliveryInfo().

The servlet stores the pending order ID in the HttpSession.

It selects the JSP page to use to generate the response based on the outcome of
calling the PlaceOrder. For example, if the call to updateDeliveryInfo() succeeds,
the servlet calls displayAvailableRestaurants().

The displayAvailableRestaurant() method retrieves the list of available restau-
rants by calling RestaurantRepository.

The displayAvailableRestaurant() method forwards the request to the JSP page
availableRestaurants.jsp, passing PendingOrder and the list of restaurants as
HttpServletRequest attributes.

The other servlets are similar. They validate the request parameters, invoke the
PlaceOrderService, and forward the request to a JSP page.

8.4.2 JSP page design

The JSP pages generate HTML using the domain objects passed to them by the serv-
lets. Each JSP page navigates the object graph and displays the properties of domain
objects. Here is an excerpt of the JSP page that displays the available restaurants:

<%@ page import="net.chrisrichardson.foodToGo.domain.*,
bbbbbbbbbbbb➥ java.util.*" %>

<%
PendingOrder pendingOrder =
 (PendingOrder)request.getAttribute("pendingOrder");
List restaurants = (List)request.getAttribute("restaurants");
%>
…

This excerpt shows how the JSP page gets the PendingOrder and the list of restau-
rants from the HttpServletRequest. It then uses them to generate the HTML
response. The other JSP pages are similar.

B

C

D

E

F

G

H

I

310 CHAPTER 8

Using an exposed domain model
8.4.3 PlaceOrderService configuration

The servlets and JSP pages are not the only part of the design that is independent
of the persistence framework. There are also the Spring beans that configure the
PlaceOrderService. The PlaceOrderService is wrapped with two interceptors. First
is the TransactionRetryInterceptor, which retries the transaction if it is rolled
back because of a database concurrency failure, and the second is Spring’s Trans-
actionInterceptor. Listing 8.2 shows the definitions of the PlaceOrderService,
TransactionInterceptor, TransactionRetryInterceptor, and PlaceOrderService-
ProxyCreator beans.

<beans>
…
<bean id="PlaceOrderService"
 class="net.chrisrichardson.foodToGo.domain.PlaceOrderServiceImpl">
 <constructor-arg ref="RestaurantRepositoryImpl"/>
 <constructor-arg ref="PendingOrderRepositoryImpl"/>
</bean>

<bean id=" PlaceOrderServiceProxyCreator "
 class="org.springframework.aop.framework.autoproxy.
bbbbbbb➥ BeanNameAutoProxyCreator">
 <property name="beanNames">
 <list>
 <idref bean="PlaceOrderService" />
 </list>
 </property>
 <property name="interceptorNames">
 <list>
 <idref bean="TransactionRetryInterceptor" />
 <idref bean="TransactionInterceptor" />
 </list>
 </property>
</bean>

<bean id="TransactionInterceptor"
 class="org.springframework.transaction.interceptor.
bbbbbbb➥ TransactionInterceptor">
 <property name="transactionManager" ref="myTransactionManager"/>
 <property name="transactionAttributeSource">
 <value>
 net.chrisrichardson.foodToGo.domain.PlaceOrderService.*=
bbbbb➥ PROPAGATION_REQUIRED
 </value>
 </property>

Listing 8.2 placeOrderService-exposedDomain-beans.xml

Using JDO with an exposed domain model 311
</bean>

<bean id="TransactionRetryInterceptor"
 class="net.chrisrichardson.foodToGo.util.
bbbbbbb➥ TransactionRetryInterceptor">
 <property name="maxRetryCount" value="5"/>
</bean>
…
<beans>

The PlaceOrderService bean is implemented by the PlaceOrderServiceImpl
class and is injected with the PendingOrderRepository and the RestaurantRepos-
itory. The PlaceOrderServiceProxyCreator bean wraps the PlaceOrderService
with the TransactionRetryInterceptor and the TransactionInterceptor. Let’s
now look at the persistence framework–specific details of the design, starting
with the JDO version.

8.5 Using JDO with an exposed domain model

In addition to the persistence framework-independent parts of the design that
you have just seen, there are some JDO-specific Spring beans and configuration
settings. The JDO-specific Spring beans are the JdoTransactionManager that is
used by the TransactionInterceptor, and the JDO PersistenceManagerFactory,
which must be configured to support nontransactional reads. We must also con-
figure the web application to initialize the Spring WebApplicationContext and to
invoke the OpenPersistenceManagerInViewFilter, which is the servlet filter that
manages the PersistenceManager. Let’s look at each of these.

8.5.1 Defining the Spring beans

Here are the Spring beans that configure the JdoTransactionManager and the
PersistenceManagerFactory:

<bean id="myTransactionManager"
 class="org.springframework.orm.jdo.JdoTransactionManager">
 <property name="persistenceManagerFactory"
BBBBBref="myPersistenceManagerFactory"/>
</bean>

<bean id="myPersistenceManagerFactory"
EEclass="org.springframework.orm.jdo.
bbbb ➥ LocalPersistenceManagerFactoryBean">
 B<property name="jdoProperties">

312 CHAPTER 8

Using an exposed domain model
bbb<props>
b bb<prop key="javax.jdo.option.NontransactionalRead">
bb➥ true</prop>
bb b<prop key="javax.jdo.option.RetainValues">
b ➥ true</prop>
bbbbb…
bbb</props>
bb</property>
 …
</bean>

The JdoTransactionManager is configured to use the PersistenceManagerFactory
configured by the myPersistenceManagerFactory bean. The myPersistenceMan-
agerFactory bean configures the PersistenceManagerFactory to allow nontrans-
actional reads. Setting the NontransactionalRead property to true allows the JSP
pages to navigate the object graph and perform queries outside of a transaction.
Setting the RetainValues property to true tells the JDO implementation to keep
the objects that were accessed during the transaction in the cache after the trans-
action commits. This improves performance because it ensures that they will not
be reloaded when they are accessed by the JSP pages outside of the transaction.
Not shown are the JDO implementations of the repositories, which are configured
in the same way as in chapter 7.

 Now that we have configured the Spring beans, let’s configure the web applica-
tion.

8.5.2 Configuring the web application

To be able to deploy the application in a web container, we must first package the
application’s components, including the servlets and business logic classes, as a
web application. One part of creating the web application is defining some entries
in its web.xml file. The web.xml configures the servlets, which handle the HTTP
requests, the Spring WebApplicationContext, and the OpenPersistenceManager-
InViewFilter, which is the servlet filter that opens and closes the PersistenceMan-
ager. Listing 8.3 shows an example configuration.

<web-app>

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 classpath:/placeOrderService-exposedDomain-beans.xml
 …
 </param-value>
</context-param>

Listing 8.3 web.xml for the Open PersistenceManager in View example

B

Using JDO with an exposed domain model 313
<filter>
 <filter-name>OpenPersistenceManagerInViewFilter</filter-name>
bb<filter-class>
bborg.springframework.orm.jdo.support.
bb➥ OpenPersistenceManagerInViewFilter
bb</filter-class>
bb<init-param>
 <param-name>persistenceManagerFactoryBeanName</param-name>
 <param-value>myPersistenceManagerFactory</param-value>
 </init-param>
</filter>

<filter-mapping>
 <filter-name>OpenPersistenceManagerInViewFilter</filter-name>
 b<url-pattern>/*</url-pattern>
</filter-mapping>

<servlet>
 <servlet-name>context</servlet-name>
 <servlet-class>org.springframework.web.context.
bbbb➥ ContextLoaderServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

<servlet>
 <servlet-name>UpdateDeliveryInfoServlet</servlet-name>
 <servlet-class>
 net.chrisrichardson.foodToGo.ui.domain.servlets.
bbb➥ UpdateDeliveryInfoServlet
 </servlet-class>
</servlet>
…
</web-app>

Let’s look at the details:

The web application context parameter contextConfigLocation lists the XML files
that define the Spring beans, including placeOrderService-exposedDomain-
beans.xml.

The OpenPersistenceManagerInViewFilter is configured to use the session factory
named myPersistenceManagerFactory, which it retrieves from the web applica-
tion’s WebApplicationContext.

C

D

E

F

B

C

314 CHAPTER 8

Using an exposed domain model
The OpenPersistenceManagerInViewFilter is configured to be invoked for all
requests.

The ContextLoaderServlet is a Spring servlet that reads the Spring configure files
specified by the contextConfigLocation parameter and initializes the WebApplica-
tionContext.

The UpdateDeliveryInfoServlet is one of the application’s servlets.

This file, along with the Spring bean configuration files, the application classes,
and the required libraries, would be packaged as a web application and deployed
in a web container.

8.6 Using Hibernate with an exposed domain model

The Hibernate-specific Spring beans and configuration settings are similar to the
JDO beans and settings you just saw. Let’s look at them.

8.6.1 Defining the Spring beans

The Hibernate version of the Spring configuration files defines the myTransac-
tionManager Spring bean, which is used by the TransactionInterceptor:

<bean id="myTransactionManager"
 class="org.springframework.orm.hibernate.
bbbbbbbbb➥ HibernateTransactionManager">
 <property name="sessionFactory" ref="mySessionFactory"/>
</bean>

The Hibernate repositories and SessionFactory are configured in the same way
we showed you in chapter 7. Since Hibernate automatically supports nontransac-
tional reads, we do not need to configure the SessionFactory in any special way.

8.6.2 Configuring the web application

As with the JDO version, we must configure the web application with some entries
in the web.xml. These entries configure Spring, the OpenSessionInViewFilter,
and the servlets. Listing 8.4 shows an example configuration.

<web-app>

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>

E

F

Listing 8.4 web.xml for the Open Session in View example

D

Using Hibernate with an exposed domain model 315
 classpath:/placeOrderService-exposedDomain-beans.xml
 …
 </param-value>
</context-param>

<filter>
 <filter-name>OpenSessionInViewFilter</filter-name>
bb<filter-class>
bborg.springframework.orm.hibernate.support.OpenSessionInViewFilter
bb</filter-class>
 <init-param>
 <param-name>sessionFactoryBeanName</param-name>
 <param-value>mySessionFactory</param-value>
 </init-param>
</filter>

<filter-mapping>
 <filter-name>OpenSessionInViewFilter</filter-name>
 b<url-pattern>/updateDeliveryInfo</url-pattern>
</filter-mapping>

<servlet>
 <servlet-name>context</servlet-name>
 <servlet-class>org.springframework.web.context.ContextLoaderServlet
➥</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

<servlet>
 <servlet-name>UpdateDeliveryInfoServlet</servlet-name>
 <servlet-class>
 net.chrisrichardson.foodToGo.ui.domain.servlets.
bbb➥ UpdateDeliveryInfoServlet
 </servlet-class>
</servlet>
…
</web-app>

The web.xml in listing 8.4 is quite similar to the JDO version we saw earlier. The
main difference is that it uses the Hibernate-specific OpenSessionInViewFilter.
The OpenSessionInViewFilter is configured to use the session factory named
mySessionFactory, which it retrieves from the web application’s ApplicationCon-
text. This web.xml file, along with the Spring bean configuration files, the appli-
cation classes, and the required libraries, would be packaged as a web application
and deployed in a web container.

316 CHAPTER 8

Using an exposed domain model
8.7 Summary

One drawback of using a POJO façade is that you must write potentially complex
and error-prone code to detach domain objects. A simpler approach, which elimi-
nates the need to detach objects, is to use the Exposed Domain Model pattern.
This pattern keeps the persistence framework connection open for the duration
of the request, which allows the presentation tier to lazily load objects. The pre-
sentation tier calls domain services to update the domain objects, as well as repos-
itories to query the database, and then gets the data to display directly from
domain entities and value objects. You no longer have to worry about detaching
the objects that it needs.

 However, while this approach reduces the amount of code that you must write,
there are some tricky design issues because of how transactions, persistence
frameworks, and the servlet API interact. Also, the lack of a façade increases the
chance that changes to the business tier could affect the presentation tier. There
is also the risk of business logic creeping into the presentation tier. Despite these
drawbacks, this approach makes sense for many applications and is becomingly
increasingly popular.

 In the next chapter you’ll learn how to implement business logic using a pro-
cedural approach.

Using the
Transaction Script pattern
This chapter covers
■ Deciding when to use a procedural approach
■ Implementing and testing procedural code
■ Accessing the database with iBATIS and Spring
317

318 CHAPTER 9

Using the Transaction Script pattern
The Domain Model pattern is an excellent way to organize complex business
logic. However, there are situations where you might not want to use a domain
model, such as when the development team lacks the necessary OO design skills
to develop one or the business logic is very simple. It also does not make sense to
use a domain model when you cannot use a persistence framework because, for
example, the architecture does not include one or the application accesses the
database in ways that require it to use SQL directly. In these situations, you should
consider writing procedural business logic, an approach also known as the Trans-
action Script pattern.

 In this chapter, we explore the benefits and drawbacks of using the Transac-
tion Script pattern, and describe how to implement this pattern using POJOs and
the Spring framework. You’ll learn how to implement the procedural business
logic and database access logic in a way that makes them easier to develop, test,
and maintain. You’ll also learn how to develop procedural business logic using a
test-driven approach that uses mock objects to implement the tests. We use the
Place Order use case as an example.

9.1 Overview of the Transaction Script pattern

The law of unintended consequences is that human actions always have unfore-
seen effects. Sometimes, these consequences are positive, such as the drug aspirin
preventing heart attacks. Other unforeseen consequences are negative or a
source of further problems, such as drugs with dangerous side effects and wind
farms that threaten migrating birds. Software technologies also have unexpected
consequences such as Tim Berners-Lee’s hypertext system for sharing information
with particle physics researchers growing into the World Wide Web.

 EJBs are intended to be a framework for building OO business applications. But,
ironically, one of its negative unintended consequences is that it has done a lot to
encourage procedural programming. As we saw in chapter 1, it’s very common for
the business logic of a J2EE application to reside in the session beans instead of
being distributed among domain objects. Such a design is a perfect example of the
Transaction Script pattern. Each session bean method is what this pattern calls a
transaction script.

 This pattern is widely used mainly because EJB 1 and EJB 2 made it easy to design
applications this way while making it difficult to use an OO approach. As a result,
the Transaction Script pattern is used even when inappropriate, which has led to all
kinds of problems. However, despite its drawbacks there are situations when this

Overview of the Transaction Script pattern 319
pattern is the best choice. Let’s investigate when it makes sense to use the Transac-
tion Script pattern and how to implement it using POJOs, iBATIS, and Spring.

9.1.1 Applying the Transaction Script pattern

The Transaction Script pattern organizes the business logic into a set of transac-
tion scripts, each of which is a method that accesses the database and performs
computations. Each transaction script handles one request from the presentation
tier. They are usually grouped together to form a transaction script class that
implements the business logic for one or more use cases. Using the Transaction
Script pattern is very straightforward because you do not have to worry about
identifying classes and assigning responsibilities as you do when developing a
Domain Model pattern-based design. For each request, you simply write one
transaction script.

 The simplicity of this pattern is also a major limitation. Unlike the Domain
Model pattern, which creates a design in which classes typically have both data
and behavior, the Transaction Script pattern creates a design in which classes have
either data or behavior. The transaction script classes have behavior but no data
and manipulate dumb data objects that have data but no behavior. As a result, the
business logic is concentrated in a relatively small number of transaction scripts,
which can make it difficult to understand and maintain, especially if it is complex.

 A transaction script-based design consists of the transaction scripts; the DTOs,
which are the dumb data objects; and the DAOs, which are used by the transaction
scripts to access the database. Let’s look briefly at each part of the design and then
explore an example.

Implementing transaction script classes
A transaction script class consists of a set of transaction script methods. It is almost
always a stateless class, which means that it does not store any state that relates to
its caller. In a traditional J2EE architecture, the transaction script class is imple-
mented as a stateless session bean. When using lightweight technologies such as
Spring, the transaction script class is a POJO that uses a Spring AOP interceptor to
manage transactions.

Using DTOs
A transaction script manipulates dumb data objects, also known as DTOs, that con-
tain data from the database and that are returned by the transaction script to the
presentation tier. A typical transaction script queries the database and creates one
or more DTOs that contain the results of the query. The transaction script might
then perform computations, change the DTOs, and update the database. It would

320 CHAPTER 9

Using the Transaction Script pattern
then return some of the DTOs to the presentation tier, which uses the data within
those DTOs to generate the response to the user.

Accessing the database with DAOs
Transaction scripts could access the database by calling JDBC or iBATIS directly.
The trouble with this approach is that the transaction scripts will contain a mixture
of business logic and database access code, which can make them difficult to main-
tain and test. It’s better to move the database access code into a separate set of DAO
classes that encapsulate the database access logic and define methods for creating,
reading, deleting, and updating rows in the database tables. There is typically one
DAO for each of the main entities in the application. A DAO returns the results of
a query as one or more DTOs, and a transaction script passes DTOs to the DAOs in
order to insert or update data in the database. As you will see later, using DAOs sim-
plifies the transaction scripts and makes them considerably easier to test.

An example of a transaction script-based design
Let’s look at a simple example of a transaction script-based design. The design,
which is shown in figure 9.1, uses the Transaction Script pattern to implement the
business logic for the Place Order use case. It consists of the following:

■ The PlaceOrderTransactionScripts class implements the transaction scripts.

■ DAOs encapsulate the database access logic.

■ DTOs contain data that is retrieved from the database and returned to the
presentation tier.

■ The Spring TransactionInterceptor class ensures that each invocation of a
transaction script is transactional.

The PlaceOrderTransactionScripts class defines a transaction script for each
request that it must handle, including updateDeliveryInfo(), which is called
when the user enters the delivery information, and updateRestaurant(), which is
called when the user selects a restaurant.

 The transaction scripts access the database by calling the DAOs, which define
methods for creating, finding, deleting, and updating pending orders and restau-
rants in the database. Each DAO consists of an interface, as well as an implementa-
tion class that uses either JDBC or iBATIS to access the database. The
PendingOrderDAO queries and updates the PENDING_ORDER and PENDING
_ORDER_LINE_ITEM tables, and the RestaurantDAO queries the RESTAURANT and
MENU_ITEM tables.

Overview of the Transaction Script pattern 321
The transaction scripts use DTOs to exchange data with the DAOs. The DAOs
return the results of a query as one or more DAOs, and the transaction scripts
pass DTOs to the DAOs in order to insert or update data in the database. For
example, PendingOrderDAO defines a findPendingOrder() method, which returns
a PendingOrderDTO that contains the pending order from the database, and a

Spring TransactionInterceptor

<<transaction scripts>>
UpdateDeliveryInfoResult updateDeliveryInfo(...)
PlaceOrderResult updateRestaurant(...)
PlaceOrderResult updateQuantities(...)

PlaceOrderTransactionScripts

PendingOrderDTO create()
PendingOrderDTO find(id)
update(PendingOrderDTO)

<<interface>>
PendingOrderDAO

findRestaurant(id)
isRestaurantAvailable()
findAvailableRestaurants()

<<interface>>
RestaurantDAO

PendingOrder
DAOImpl

Restaurant
DAOImpl

PendingOrder
DTO

Restaurant
DTO

PendingOrder
LineItemDTO

MenuItem
DTO

iBATIS

Figure 9.1 An example of a design using the Transaction Script pattern

322 CHAPTER 9

Using the Transaction Script pattern
savePendingOrder() method, which takes a PendingOrderDTO as a parameter and
saves it in the database.

 The transaction scripts also return the DTOs, such as PlaceOrderResult and
UpdateDeliveryInfoResult, to the presentation tier. These DTOs contain a status
code and other DTOs, such as PendingOrderDTO.

 This design has a simple structure, which is a distinctive feature of a Transac-
tion Script pattern-based design. The majority of the code is in the transaction
scripts and the DAOs. You may have noticed that the names of the DTOs, which
are simple data holders, are similar to the names of the domain model classes that
we implemented in chapter 3. It is important to remember that they contain only
data and do not implement any other behavior. As you will see later, the simplicity
of this pattern is both a blessing and a curse.

9.1.2 Benefits and drawbacks of the Transaction Script pattern

The Transaction Script pattern has the following benefits and drawbacks.

Easy to use
One of the most appealing aspects of the Transaction Script pattern is that it is
easy to apply because you don’t need to have OO design skills. You just have to
write a transaction script method to handle each request. Similarly, to implement
a new business logic feature you typically have to add some code to an existing
transaction script. In comparison, to use the Domain Model pattern you must
have object-design skills and know how to identify classes and assign responsibili-
ties to them.

Can use full range of SQL features
Another benefit of the Transaction Script pattern is that it can sometimes improve
performance significantly because transaction scripts can access the database
using the full range of SQL features. An application can use SQL to efficiently
query the database in ways that are not supported by persistence frameworks such
as JDO and Hibernate. This can be especially important when you’re working with
a legacy schema. In addition, SQL’s ability to perform bulk updates and deletions
is far superior to those capabilities provided by some persistence frameworks. As a
result, it’s not uncommon to implement some parts of an application using the
Transaction Script pattern and SQL.

Code can be difficult to understand and maintain
The simplicity of this pattern is a double-edged sword. Because you do not have to
do any OO design, all of the business logic is concentrated in the transaction

Overview of the Transaction Script pattern 323
scripts. This can make the code difficult to understand and maintain, especially if
the business logic is complex. This is made worse by the fact that transaction
script-based business must explicitly load and save data, whereas in a domain
model-based design, many objects are automatically loaded by navigation and
changes are automatically written back to the database.

Cost of maintaining handwritten SQL
Another problem with using the Transaction Script pattern is that you have to write
all of the SQL yourself. While this gives you a lot of control and makes your SQL
available for inspection by the DBAs, it can be difficult and tedious to maintain
large amounts of SQL. It is quite common for one small change to a table definition
to cause you to update multiple SQL statements and DAOs. For example, if you add
a column to the RESTAURANT table, then in addition to changing the Restaurant-
DAO you might need to change the PendingOrderDAO because it executes a SQL state-
ment involving the RESTAURANT table. There are ways of designing the DAO
classes that reduces this problem, but they do not prevent it altogether.

Lack of portability of SQL
The problem with developing and maintaining SQL is made even worse by the dif-
ferences between the SQL dialects supported by the various databases. For exam-
ple, some databases (such as Oracle) have sequences to generate unique IDs,
whereas other databases (such as HSQLDB) have identity columns. Consequently,
developing a JDBC application that supports multiple databases is extremely chal-
lenging. This can be a problem even if your application is only deployed on a sin-
gle database because you might want to write tests that use an in-memory database
such as HSQLDB.

 You could use a persistence framework to avoid these problems. JDO and
Hibernate insulate the application from the differences between the various data-
bases and will even generate the DDL that defines the schema from the O/R map-
ping. In this kind of design, the persistent classes would mirror the database
schema rather than implementing a domain model and would not contain any
business logic. Of course, this option would only work if an application accessed
the database in ways that are supported by the persistence framework, which is
often not the case if you are using the Transaction Script pattern. Moreover, if the
application can use a persistence framework, then it is not clear why you would
not want to go further and implement a complete domain model.

324 CHAPTER 9

Using the Transaction Script pattern
9.1.3 When to use the Transaction Script pattern

As you have just seen, business logic organized using the Transaction Script pat-
tern can be hard to maintain because it is procedural and typically uses handwrit-
ten SQL to access the database. However, there are four main situations where the
Transaction Script pattern is the best choice.

The application must use SQL directly
One common reason to use the Transaction Script pattern is if the application
must execute SQL directly because it needs to access the database in ways that are
not efficiently supported by the persistence framework. However, it is important
to keep in mind that persistence frameworks are constantly improving. JDO and
Hibernate have powerful query languages and they both support SQL queries,
which means that you can implement more of your business logic with the
Domain Model pattern. In addition, Hibernate 3.0 and EJB 3 support bulk
updates and deletes, which reduces the need to use SQL. As a result, the need to
directly use SQL directly is diminishing

A persistence framework is unavailable
It can also make sense to use the Transaction Script pattern if the application can-
not use a persistence framework. Budget issues and preference of the architect or
developers are just two reasons why you’d want to take this approach. In this case,
the developers must use SQL directly to access the database. In principle, you
could write JDBC code to persist a domain model, but this is usually impractical if
the domain model is complex.

The business logic is very simple
You might consider using the Transaction Script pattern if the business logic is
very simple and developing a domain model is not worthwhile. For example, if
the application just queries a database and displays the data, then it could very
well be a candidate for the Transaction Script pattern.

The development team doesn’t have OO design skills
Developing a domain model requires the development team to have OO design
skills, which is not always the case. It is better to succeed with a procedural trans-
action script-based design rather than fail with a domain model.

 Now that we have gotten an overview of the Transaction Script pattern and its
benefits and drawbacks, let’s see how to develop transaction script-based business
logic.

Identifying the transaction scripts 325
9.2 Identifying the transaction scripts

We are now going to take a step back and look at how to develop a transaction
script-based design from scratch. We’ll describe how to implement transaction
script-based business logic using the Place Order use case as an example. You will
learn how to develop working and tested transaction scripts and DAOs from the
use case and the UI design. We’ll also describe how to use Spring for transaction
and connection management.

 The process of developing Transaction Script pattern-based business logic con-
sists of the following steps:

1 Identify the transaction scripts.

2 Implement and test the transaction scripts using mock DAOs.

3 Implement and test the DAOs.

4 Configure Spring beans to provide JDBC transaction and connection man-
agement.

Let’s start by identifying the transaction scripts; later sections describe the other
steps. The techniques for identifying transaction scripts are similar to the ones
used in chapters 3 and 7 to design the domain model service and the POJO
façade, but we’ll review the basic process here.

9.2.1 Analyzing the use case

You can identify the transaction scripts and determine their responsibilities,
parameters, and return types by analyzing the use case and the user interface. The
transaction scripts typically correspond to the steps of the use case. Consider, for
example, the Place Order use case:

The customer enters the delivery address and time. The system first verifies that
the delivery time is in the future and that at least one restaurant serves the deliv-
ery information. It then updates the pending order with the delivery informa-
tion, and displays a list of available restaurants.

The customer selects a restaurant. The system updates the pending order with
the restaurant and displays the menu for the selected restaurant.

The customer enters quantities for each menu item. The system updates the
pending order with the quantities and displays the updated pending order.

326 CHAPTER 9

Using the Transaction Script pattern
Each paragraph of this use case suggests several transaction scripts, including:

■ updateDeliveryInfo(): Validates the delivery information and creates or
updates the pending order

■ updateRestaurant(): Updates the pending order with the selected restaurant

■ updateQuantities(): Updates the line item quantities of the pending order

You can also determine a transaction script’s parameters, which consist of user
input, from the use case. For example, the Place Order use case implies that the
updateDeliveryInfo() transaction takes the delivery address and time entered by
the user as parameters. The use case may also reveal additional parameters and
return values that hold the session state that is exchanged between the presenta-
tion tier and the transaction scripts. See chapter 3, which uses the same techniques
to design the domain model service for the Place Order use case, for the details.

9.2.2 Analyzing the user interface design

Another way to identify the transaction scripts is by analyzing the UI design and
defining a transaction script for each HTTP request. Furthermore, you can analyze
the data that is displayed on each screen to determine the data that each transac-
tion script must return and hence the DTOs that you must implement. For exam-
ple, figure 9.2 shows the first two HTTP requests for the Place Order use case.

 The first request is sent by the user’s browser when they enter the delivery
information. The presentation tier calls a transaction script to update the pend-
ing order and displays the list of available restaurants, which must be returned by
the transaction script. The second request is sent when the user selects a restau-
rant. The presentation tier calls another transaction script to update the pending
order and displays the menu for the selected restaurant, which must also be
returned by the transaction script.

 For the details of how to do this and a more in-depth example, see chapter 7,
which uses similar techniques to design a POJO façade.

The customer enters payment information (credit card information and billing
address). The system updates the pending order with the payment information
and displays the pending order with totals, tax, and charges.

The customer confirms that she wants to place the order. The system authorizes
the credit card, creates the order, and displays an order confirmation, which
includes the order number.

Identifying the transaction scripts 327
9.2.3 The PlaceOrderTransactionScripts interface

Figure 9.3 shows the outcome of analyzing the Place Order use case and the UI. As
you might expect, the PlaceOrderTransactionScripts interface is very similar to
the PlaceOrderFacade interface developed in chapter 7. After all, they were
derived from the same requirements using the same process. But one important
difference between the two interfaces is that the transaction scripts return DTOs
instead of domain objects. Moreover, as you will see a bit later, their implementa-
tions are very different.

 The PlaceOrderTransactionScripts interface specifies transaction scripts for
each step of the use case including updateDeliveryInfo() and updateRestau-
rant(). The transaction scripts return DTOs containing data that is displayed by the
presentation tier or stored as part of the session state. For example, update-
DeliveryInfo() returns an UpdateDeliveryInfoResult, which contains a status
code indicating the outcome of calling the transaction script, a PendingOrderDTO
containing the attributes of the PendingOrder from the database, and a list of avail-
able restaurants. Here is part of the corresponding Java definition of the Place-
OrderTransactionScripts interface:

:Browser
:Presentation

Tier

enter delivery information(address, time)

:PlaceOrder
Transaction

Scripts

updateDeliveryInformation(pendingOrderId, address, time)

PendingOrder+available Restaurants

HTML page

select restaurant (restaurant id)

updateRestaurant(pendingOrderId, restaurant)

PendingOrder+restaurant+menuItems

HTML page

Figure 9.2 Some of the HTTP requests for the Place Order use case

328 CHAPTER 9

Using the Transaction Script pattern
public interface PlaceOrderTransactionScripts {

 public UpdateDeliveryInfoResult updateDeliveryInfo(
 String pendingOrderId,
 Address deliveryAddress, Date deliveryTime);

 public PlaceOrderResult updateRestaurant(
 String pendingOrderId, String restaurantId);

 public PlaceOrderResult updateQuantities(
 String pendingOrderId, int[] quantities);
…
}

Let’s now develop the implementation the transaction script’s interface.

getId()
getDeliveryTime()
getDeliveryAddress()
...

<<dto>>
PendingOrderDTO

getQuantity()
getMenuItem()
getExtendedPrice()

<<dto>>
PendingOrderLine

ItemDTO

getMenuItems()

<<dto>>
RestaurantDTO

getId()
getName()
getPrice()

<<dto>>
MenuItemDTO

UpdateDeliveryInfoResult updateDeliveryInfo(pendingOrderId, address, time)
PlaceOrderResult updateRestaurant(pendingOrderId, restaurantId)
PlaceOrderResult updateQuantities(pendingOrderId, quantities)
...

<<interface>>
PlaceOrderTransactionScripts

getStatusCode()
getPendingOrderDetail()

<<dto>>
PlaceOrderResult

getAvailableRestaurants()

<<dto>>
UpdateDeliveryInfo

Result

getId()
getName()

<<DTO>>
RestaurantSummary

DTO

Figure 9.3 Design of the transaction script interface

Implementing a POJO transaction script 329
9.3 Implementing a POJO transaction script

Once you have identified the transaction scripts and determined their parameters
and return types, the next step in the process is to implement them using a test-
driven approach. The PlaceOrderTransactionScripts interface is implemented
by PlaceOrderTransactionScriptsImpl, which is shown in figure 9.4. PlaceOrder-
TransactionScriptsImpl is a POJO and uses Spring AOP for JDBC connection and
transaction management. Its constructors take the DAOs that it calls to access the
database as parameters. This enables Spring to supply the DAOs to the PlaceOr-
derTransactionScriptsImpl by using constructor injection.

 To understand how to implement a transaction script, let’s take an in-depth
look at one of them: the updateDeliveryInfo() transaction script. From analyz-
ing the use case, we determined it has the following responsibilities. It must cre-
ate the pending order if required, validate the delivery information, and store it
in the pending order. In addition, updateDeliveryInfo() must return an Update-
DeliveryInfoResult containing a successful status code, PendingOrderDTO, and
the list of available restaurants. As before, we will start by writing a test and using
it to drive the design.

9.3.1 Writing a test for the transaction script

The updateDeliveryInfo() transaction script can be invoked with many different
combinations of arguments. For example, the pending order ID can be null,
which indicates a new pending order, or it can identify an existing pending order.

Spring TransactionInterceptor

<<transaction scripts>>
updateDeliveryInfo()
updateRestaurant()
updateQuantities()
...

PlaceOrderTransactionScriptsImpl

<<interface>>
PlaceOrderTransactionScripts

<<interface>>
PendingOrderDAO

<<interface>>
RestaurantDAO

Figure 9.4
Transaction Script–based
business tier design

330 CHAPTER 9

Using the Transaction Script pattern
Similarly, the delivery information parameters can be valid or invalid for a variety
of reasons. In order to flesh out and thoroughly test the transaction script, we
must write tests for several combinations of arguments. Let’s look a test for the
scenario where updateDeliveryInfo() is invoked with a null pending order ID
and valid delivery information.

 In this scenario, updateDeliveryInfo() fulfills its responsibilities as follows:

1 Creates the PendingOrder—It can call PendingOrderDAO.createPending-
Order().

2 Verifies that the delivery time in the future—It can do this with some simple
conditional logic.

3 Finds the available restaurants—It can retrieve the available restaurants by
calling the RestaurantDAO, which defines a findAvailableRestaurants()
method. This method returns the list of restaurants that serve the speci-
fied delivery information.

4 Stores the delivery information in the PendingOrder—updateDeliveryInfo() can
do this by simply calling setters on the PendingOrderDTO. Remember that
unlike the PendingOrder domain object, the PendingOrderDTO does not
implement any business logic and so doesn’t validate the data that it contains.

5 Saves it in the database—It saves the PendingOrder in the database by calling
PendingOrderDAO.savePendingOrder(), which updates the PENDING_OR-
DER table.

6 Returns an UpdateDeliveryInfoResult that contains the updated Pending-
Order and the available restaurants—It creates the UpdateDeliveryInfo-
Result by calling new.

We can write a test that verifies that updateDeliveryInfo() does this by using
mock objects for the PendingOrderDAO, RestaurantDAO, and PendingOrderDTO. The
test configures these mock objects to expect particular methods to be called and
return test values, and passes the mock DAOs to PlaceOrderTransaction-

ScriptsImpl as constructor arguments. It then calls the transaction script and ver-
ifies that it returns the expected DTO. Listing 9.1 shows the test method.

public class PlaceOrderTransactionScriptsImplTests
 extends MockObjectTestCase {

 private Mock mockPendingOrderDAO;

Listing 9.1 PlaceOrderTransactionScriptsImplTests

Implementing a POJO transaction script 331
 private Mock mockRestaurantDAO;

 private PendingOrderDAO pendingOrderDAO;

 private RestaurantDAO restaurantDAO;

 private PlaceOrderTransactionScripts service;

 private Mock mockPendingOrder;

 private PendingOrderDTO pendingOrder;

 public void setUp() throws Exception {
 super.setUp();
 mockPendingOrderDAO = new Mock(
 PendingOrderDAO.class);
 mockRestaurantDAO = new Mock(
 RestaurantDAO.class);
 pendingOrderDAO = (PendingOrderDAO) mockPendingOrderDAO
 .proxy();
 restaurantDAO = (RestaurantDAO) mockRestaurantDAO
 .proxy();
 mockPendingOrder = new Mock(
 PendingOrderDTO.class);
 pendingOrder = (PendingOrderDTO) mockPendingOrder
 .proxy();
 service = new PlaceOrderTransactionScriptsImpl(
 pendingOrderDAO, restaurantDAO);
 }

 public void testUpdateDeliveryInfo_good()
 throws Exception {

 Address deliveryAddress = new Address();
 Date deliveryTime = new Date();
 List availableRestaurants = Collections
 .singletonList(new RestaurantDTO());

 mockPendingOrderDAO.expects(once())
 .method("createPendingOrder")
 .will(eturnValue(pendingOrder));

 mockPendingOrderDAO.expects(once())
 .method("savePendingOrder")
 .with(eq(pendingOrder));

 mockRestaurantDAO
 .expects(once())
 .method("findAvailableRestaurants")
 .with(eq(deliveryAddress),

B

C

D

332 CHAPTER 9

Using the Transaction Script pattern
 eq(deliveryTime))
 .will(
 returnValue(availableRestaurants));

 mockPendingOrder.expects(once())
 .method("setDeliveryAddress")
 .with(eq(deliveryAddress));
 mockPendingOrder.expects(once())
 .method("setDeliveryTime")
 .with(eq(deliveryTime));
 mockPendingOrder
 .expects(once())
 .method("setState")
 .with(eq(PendingOrder.
bbbbbbb➥ DELIVERY_INFO_SPECIFIED));

 UpdateDeliveryInfoResult result =
 service
 .updateDeliveryInfo(null,
 deliveryAddress, deliveryTime);

 assertEquals(
 UpdateDeliveryInfoResult.
 SELECT_RESTAURANT,
 result.getStatusCode());
 assertSame(pendingOrder, result
 .getPendingOrder());
 assertSame(availableRestaurants, result
 .getAvailableResturants());
 }
}

Let’s look at the details:

The setup() method creates the mock objects and the PlaceOrderTransaction-
ScriptsImpl.

The testUpdateDeliveryInfo_good() method configures the mock PendingOrder-
DAO to expect its createPendingOrder() method to be called and to return the blank
PendingOrder.

The test configures the mock RestaurantDAO to expect its findAvailableRestau-
rants() to be called with the delivery information and to return the list of avail-
able restaurants.

The testUpdateDeliveryInfo_good() method configures the mock PendingOrder
to expect its savePendingOrder() to be called with the updated PendingOrder.

D

E

F

G

B

C

D

E

Implementing a POJO transaction script 333
The test calls the transaction script.

The testUpdateDeliveryInfo_good() method verifies that the transaction script
returns an UpdateDeliveryInfoResult containing the expected data.

The tests for the other scenarios are similar. They configure mock objects, call
updateDeliveryInfo() with other combinations of arguments, and assert that the
method returns the expected value. Let’s now look at the updateDeliveryInfo()
method.

9.3.2 Writing the transaction script

Now that we have written a test, the next step is to get it to compile and pass. To
do that we must implement the updateDeliveryInfo() transaction script, as well
as the DTOs. Let’s look at how to do that, beginning with the transaction script.

Writing the updateDeliveryInfo() method
The updateDeliveryInfo() method is one of the transaction scripts implemented
by the PlaceOrderTransactionScriptsImpl. Listing 9.2 shows PlaceOrderTransac-
tionScriptsImpl’s constructor and the updateDeliveryInfo() transaction script.
The constructor takes a PendingOrderDAO and a RestaurantDAO as parameters and
stores them in fields for use by the transaction scripts. The updateDeliveryInfo()
transaction script finds or creates the PendingOrder; finds the available restau-
rants; updates the PendingOrder if the delivery information is valid; and returns
the UpdateDeliveryInfoResult.

public class PlaceOrderTransactionScriptsImpl implements
 PlaceOrderTransactionScripts {

 private RestaurantDAO restaurantDAO;

 private PendingOrderDAO pendingOrderDAO;

 public PlaceOrderTransactionScriptsImpl(
 PendingOrderDAO pendingOrderDAO,
 RestaurantDAO restaurantDAO) {
 this.pendingOrderDAO = pendingOrderDAO;
 this.restaurantDAO = restaurantDAO;
 }

 public UpdateDeliveryInfoResult updateDeliveryInfo(
 String pendingOrderId,
 Address deliveryAddress, Date deliveryTime) {

G

Listing 9.2 PlaceOrderTransactionScriptsImpl

F

334 CHAPTER 9

Using the Transaction Script pattern
 PendingOrderDTO pendingOrder =
 findOrCreatePendingOrder(pendingOrderId);

 Calendar earliestDeliveryTime = Calendar
 .getInstance();
 earliestDeliveryTime
 .add(Calendar.HOUR, 1);

 if (deliveryTime
 .before(earliestDeliveryTime
 .getTime())) {
 return new UpdateDeliveryInfoResult(
 UpdateDeliveryInfoResult.
bbbbbbb➥ INVALID_DELIVERY_INFO,
 pendingOrder, null);
 }

 List availableRestaurants =
 restaurantDAO
 .findAvailableRestaurants(
 deliveryAddress, deliveryTime);

 if (availableRestaurants.isEmpty()) {
 return new UpdateDeliveryInfoResult (
 UpdateDeliveryInfoResult.
bbbbbbbb➥ NO_RESTAURANT_AVAILABLE,
 pendingOrder, null);
 }

 pendingOrder
 .setDeliveryAddress(deliveryAddress);
 pendingOrder
 .setDeliveryTime(deliveryTime);
 pendingOrder
 .setState(PendingOrder.
bbbbbbbbb➥ DELIVERY_INFO_SPECIFIED);

 pendingOrderDAO
 .savePendingOrder(pendingOrder);

 return new UpdateDeliveryInfoResult(
 UpdateDeliveryInfoResult.
bbbbbb➥ SELECT_RESTAURANT,
 pendingOrder,
 availableRestaurants);
 }

 private PendingOrderDTO findOrCreatePendingOrder(
 String pendingOrderId) {
 if (pendingOrderId == null)

B Finds or creates
pending order

C Checks
delivery time

D Finds available
restaurants

E Returns error code
if there are none

F Updates
PendingOrderDTO

G Saves PendingOrderDTO
back to database

H Creates
result object

Implementing a POJO transaction script 335
 return pendingOrderDAO
 .createPendingOrder();
 else
 return pendingOrderDAO
 .findPendingOrder(pendingOrderId);
 }
}

Let’s look at the details:

The updateDeliveryInfo() transaction script finds or creates the pending order
by calling the PendingOrderDAO.

The script checks that the delivery time is in the future.

The script then calls the RestaurantDAO to find the available restaurants for the
delivery information.

If the delivery information is not served by any restaurant, updateDeliveryInfo()
returns a DTO with a status code of NO_RESTAURANT_AVAILABLE.

If there are available restaurants, the transaction script updates the PendingOrder-
DTO with the new delivery information, and changes its state to
DELIVERY_INFO_SPECIFIED.

The script calls PendingOrderDAO.savePendingOrder() to update the database.

The script then returns a DTO that specifies a status code of SELECT_RESTAURANT,
which indicates that the delivery information was updated successfully, and con-
tains the list of restaurants to display.

Even though we have only implemented one of many tests for the updateDeliv-
eryInfo() transaction script, key differences between the Transaction Script pat-
tern and Domain Model pattern are beginning to emerge. The transaction script
validates the delivery information itself instead of delegating that responsibility to
a domain model. Also, the transaction script must call a DAO to save the changes
rather than relying on the persistence framework to do this automatically. The
business logic will become only more complex as we implement more tests and
flesh out the transaction script.

Implementing the DTOs
Now that we have written the transaction script, let’s implement the DTOs that are
passed between the transaction scripts and the DAOs and between the transaction
scripts and the presentation tier. The DAOs use the DTOs to return data retrieved
from the database to the transactions scripts, and the transaction scripts use the

B

C

D

E

F

g

H

336 CHAPTER 9

Using the Transaction Script pattern
DTOs to pass data to the DAOs in order to update the database. They are also
returned by the transactions scripts to the presentation tier.

 DTOs are simple data holders and only have fields and getters. The DTOs and
their fields can be identified in one of three ways:

■ Define a DTO for each database table that has fields corresponding to the
table’s columns.

■ Define a DTO for each screen whose fields contain the data that is displayed
on the screen.

■ Perform simple OO analysis and design techniques to identify the classes
and their fields.

For this particular use case, we can apply a combination of these techniques and
get the DTOs shown in figure 9.5.

 The names of these DTOs, their fields, and their associations are very similar to
the names, fields, and associations of the classes in the domain model described
earlier in chapter 3. However, one very important difference is that unlike the
domain model classes, they do not implement any business logic. Listing 9.3
shows an excerpt of the source code for the PendingOrderDTO that illustrates the
simple structure of a DTO.

pendingOrderId
state
deliveryTime

PendingOrder
DTO

quantity

PendingOrder
LineItemDTO

restaurantId
name

Restaurant
DTO

menuItemId
name
price

MenuItem
DTO

Address

Payment
Information

restaurantId
name

Restaurant
Summary

DTO

Figure 9.5 Design of the details classes

Implementing the DAOs with iBATIS and Spring 337
public class PendingOrderDTO {

 private String pendingOrderId;
 private int state;
 private Address deliveryAddress;
 private Date deliveryTime;
 private RestaurantDTO restaurant;
 private List lineItems = new ArrayList();

 public PendingOrderDTO() {
 }

 public String getPendingOrderId() {
 return pendingOrderId;
 }

 public RestaurantDTO getRestaurant() {
 return restaurant;
 }

 public int getState() {
 return state;
 }

 public Address getDeliveryAddress() {
 return deliveryAddress;
 }

 public Date getDeliveryTime() {
 return deliveryTime;
 }
…
}

It is a simple class that defines some fields and some getters and setters. Let’s now
look at the DAOs that are used by the transaction scripts to access the database.

9.4 Implementing the DAOs with iBATIS and Spring

The phrase “it’s turtles all the way down” refers to a myth (or perhaps an urban
legend) about the nature of the universe that says that the earth is on the back of
a turtle that is standing on the back of a larger turtle, and so on. I sometimes feel
the same way about software: one layer after another without end. Fortunately,
this really isn’t true and in the case of business logic that is designed using the

Listing 9.3 PendingOrderDTO

338 CHAPTER 9

Using the Transaction Script pattern
Transaction Script pattern, there are only three layers: the transaction scripts, the
DAOs, and the Spring/iBATIS class.

 So far, we have implemented the transaction scripts and tested them using
mock DAOs. The next step in the process of implementing the transaction script-
based business logic is to implement those DAOs, which include PendingOrderDAO
and RestaurantDAO. As figure 9.6 shows, each DAO consists of an interface and an
implementation class. The interface makes it easy to swap implementations. It

findOrCreatePendingOrder()
savePendingOrder()

<<interface>>
PendingOrderDAO

findAvailableRestaurants()
findRestaurant()

<<interface>>
RestaurantDAO

findOrCreatePendingOrder()
savePendingOrder()

PendingOrderDAOImpl

findAvailableRestaurants()
findRestaurant()

RestaurantDAOImpl

org.
springframework.orm.iBatis

getSqlMapClientTemplate()

SqlMapClient
DaoSupport

queryForList()
update()
delete()
...

SqlMapClient
Template

iBATIS

queryForList()
update()
delete()
...

SqlMapClient

PendingOrder.xml

<sqlmap>

<select ..>
SELECT *
FROM PENDING_ORDER
WHERE
</select>

<insert... >
INSERT INTO PENDING _ORDER
...
</insert>

<resultMap
class="PendingOrderDTO" ...>
...
</resultMap>

</sqlmap>

sqlMap-config.xml

<sqlMapConfig>
 <sqlMap resource="PendingOrder .xml" />
</sqlMapConfig>

Figure 9.6 iBATIS DAO classes and configuration files

Implementing the DAOs with iBATIS and Spring 339
enabled us, for example, to replace the real implementation with a mock imple-
mentation when testing the transaction scripts.

 The DAO interfaces define the methods that are called by the transaction
scripts to insert, find, update, and delete rows in the database. The DAO imple-
mentation classes use the Spring iBATIS support classes, which are a convenient
way to use the iBATIS framework and mirror the support that Spring provides for
JDBC and ORM frameworks such as JDO and Hibernate. These classes integrate
iBATIS with Spring’s mechanisms for managing JDBC connections and transac-
tions. They allow iBATIS to be configured using Spring beans and enable the iBA-
TIS code to use the same JDBC DataSource as the rest of the application.

 The two classes used by the DAOs are SqlMapClientTemplate and SqlMapClient-
DaoSupport. The SqlMapClientTemplate class provides methods for executing SQL
statements and is analogous to the JdoTemplate and HibernateTemplate classes you
have seen earlier in this book. It invokes an iBATIS SqlClientMap to execute SQL
statements defined in XML descriptor files, and maps any exceptions to Spring data
access exceptions. SqlMapClientDaoSupport is a convenient base class for iBATIS
DAOs and makes a SqlMapClientTemplate available to its subclasses.

 In this section, we’ll look at how to implement DAOs using iBATIS and Spring.
You will learn how to develop DAOs using a test-driven approach that uses mock
objects for the Spring/iBATIS APIs in order to be able to test the DAOs without a
database. We also describe strategies for testing with the database.

9.4.1 Overview of using iBATIS with Spring

The iBATIS framework is an open source project that was founded by Clinton
Begin with the goal of simplifying database access. The name “iBATIS” is a combi-
nation of the letter “i” from the word “Internet” and the letters “b-a-t-i-s” from the
word “abatis,” which is a defensive barrier formed by cut-down trees with sharp-
ened branches facing the enemy. In case you were wondering who the enemy is,
the name reflects the fact that the iBATIS project first developed Internet cryptog-
raphy software.

 Today, the iBATIS project is very much focused on database access software.
The iBATIS framework significantly simplifies the task of executing SQL state-
ments. It eliminates the need to write the error-prone and sometimes complex
JDBC code that manipulates PreparedStatements and ResultSets and maps
between them and Java objects. iBATIS uses XML descriptor files to map between
Java objects and SQL statements and JDBC result sets. It maps the properties of an
object to the parameters of a SQL statement and maps the columns of a ResultSet

340 CHAPTER 9

Using the Transaction Script pattern
to the properties of an object. As a result, DAOs implemented using iBATIS often
contain very little code.

Using a Spring SqlMapClientTemplate
Let’s imagine, for example, that you had to write a DAO method that finds the res-
taurants that serve a particular delivery address and time. It takes the delivery
address and time as parameters and returns a list of RestaurantDTO objects. The
DAO would execute this SELECT statement:

SELECT r.*
 FROM RESTAURANT r,
 RESTAURANT_ZIPCODE rz,
 RESTAURANT_TIME_RANGE tr
 WHERE rz.ZIPCODE = ?
 AND rz.RESTAURANT_ID = r.RESTAURANT_ID
 AND tr.RESTAURANT_ID = r.RESTAURANT_ID
 AND tr.DAY_OF_WEEK = ?
…

If you were using JDBC, then you would have to write the usual boilerplate code to
create, initialize, and execute a PreparedStatement and iterate through the
ResultSet creating the DTOs. You would also have to make sure that the Pre-
paredStatement and ResultSet were closed by using a try/finally. In compari-
son, the iBATIS/Spring version of the DAO method is remarkably simple. It
creates a map containing the parameters for the query and executes the query by
calling SqlMapClientTemplate.queryForList():

public class RestaurantDAOIBatisImpl extends SqlMapClientDaoSupport
 implements RestaurantDAO {

 public RestaurantDAOIBatisImpl(
 SqlMapClientTemplate template) {
 setSqlMapClientTemplate(template);
 }

 public List findAvailableRestaurants(Address deliveryAddress,
 Date deliveryTime) {
 Calendar c = Calendar.getInstance();
 c.setTime(deliveryTime);
 int dayOfWeek =
 c.get(Calendar.DAY_OF_WEEK);
 int hour = c.get(Calendar.HOUR_OF_DAY);
 int minute = c.get(Calendar.MINUTE);
 String zipCode =
 deliveryAddress.getZip();

 Map deliveryInfo = new HashMap();
 deliveryInfo.put("zipCode", zipCode);

Saves SqlMapClientTemplate

Creates a Map
containing query
parameters

Implementing the DAOs with iBATIS and Spring 341
 deliveryInfo.put("dayOfWeek",
 new Integer(dayOfWeek));
 deliveryInfo.put("hour", new Integer(hour));
 deliveryInfo.put("minute",
 new Integer(minute));

 return getSqlMapClientTemplate()
 .queryForList("findAvailableRestaurants",
 deliveryInfo);
 }
…
}

In this listing, the constructor saves the SqlMapClientTemplate for later by calling
setSqlMapClientTemplate(), which is provided by the superclass. The findAvail-
ableRestaurants() method creates a Map containing the parameters for the query.
It then executes the query by invoking the SqlMapClientTemplate and passing it
the name of the SQL statement and the map containing the parameters as argu-
ments. iBATIS executes the SELECT statement and constructs a list of Restaurant-
DTO objects from the ResultSet.

 In addition to queryForList(), the SqlMapClientTemplate interface provides
other methods for executing SQL statements, including the following:

■ insert() executes a SQL INSERT statement.

■ update() executes a SQL UPDATE statement.

■ queryForObject() executes a query that returns a single object.

Each method takes as parameters the name of the SQL statement to execute and
the Java object or objects that supply the SQL statement’s parameters.

 Of course, in order for iBATIS to do its job you must tell it three things: the
SQL statement to execute; how to initialize its placeholders; and, if it’s a query,
how to create Java objects from the result set. To do this, you must write one or
more XML descriptor files.

Writing the iBATIS descriptor file
iBATIS uses an XML descriptor file to define statements and result maps. A state-
ment specifies the SQL statement, its parameter map, and the result map to use.
The parameter map specifies the mapping between a Java object and the SQL
statement’s parameters, and the result map specifies the mapping between a
ResultSet’s columns and Java objects.

 Listing 9.4 shows an excerpt of the iBATIS XML file used by the findAvail-
ableRestaurants() method. This XML file defines a mapped statement, which

Creates a Map
containing query
parameters

Executes SELECT
statement

342 CHAPTER 9

Using the Transaction Script pattern
queries the RESTAURANT table to find the available restaurants for the specified
delivery information, and a result map, which constructs RestaurantDTO from
each row of the result set.

<sqlMap>

<select id="findAvailableRestaurants"
 parameterClass="java.util.Map"
 resultMap="RestaurantResultMap">
 SELECT r.*
 FROM RESTAURANT r,
 RESTAURANT_ZIPCODE rz,
 RESTAURANT_TIME_RANGE tr
 WHERE rz.ZIPCODE = #zipCode#
 AND rz.RESTAURANT_ID = r.RESTAURANT_ID
 AND tr.RESTAURANT_ID = r.RESTAURANT_ID
 AND tr.DAY_OF_WEEK = #dayOfWeek#
…
</select>
…
<resultMap id="RestaurantResultMap"
 class="net.chrisrichardson.foodToGo…details.RestaurantDTO">
 <result property="restaurantId" column="RESTAURANT_ID"/>
 <result property="name" column="NAME"/>
</resultMap>

</sqlMap>

The findAvailableRestaurants statement takes a Map as a parameter and uses its
entries in the WHERE clause of the SELECT statement. The #propertyName# notation
specifies the property to pass as a parameter.

 RestaurantResultMap is used by the statement to construct the RestaurantDTOs
from the ResultSet. It maps the columns of the ResultSet returned by executing
the query to the properties of the RestaurantDTO. It constructs a RestaurantDTO
for each row in the result set.

 In addition to mapping columns to properties, a result map can also set a
property to the result of executing a nested SELECT statement. An application can
use this feature to automatically retrieve one or more related objects. Later on
you will see some example code that uses this feature.

 The iBATIS XML files that define the mapped statements along with an iBATIS
configuration file, which lists the map XML files, are deployed in either a class

Listing 9.4 Example iBATIS description file

Implementing the DAOs with iBATIS and Spring 343
path directory or JAR file and are read by iBATIS on startup. In section 9.5, we will
look at how to configure iBATIS using Spring beans.

 Even though DAOs written using iBATIS are much simpler than DAOs written
using JDBC, it is important to remember that maintaining the XML descriptor files
and SQL statements can be a lot of work. For example, let’s imagine you need to
add a new field to an object. If you are using an ORM framework such as Hiber-
nate or JDO, which maps Java objects to the database schema, you just have to add
a single entry to an O/R mapping file. In comparison, if you are using iBATIS,
which maps objects to SQL statements, you often need to change multiple state-
ments, including at least one SELECT statement, an INSERT statement, and an
UPDATE statement. Keeping multiple statements in sync can be both time-consum-
ing and error-prone. However, if you must execute SQL statements, then iBATIS is
an excellent way to do that.

 For more detailed information about iBATIS and the Spring support classes,
see iBATIS in Action [Begin, forthcoming] and Spring in Action [Walls 2005]. Let’s
now look at how to use iBATIS and Spring to implement a DAO and see some
examples of how to use the iBATIS and Spring APIs.

9.4.2 Implementing a DAO method

Most DAOs are simple wrappers around the database access API, which in this
example is iBATIS. Each DAO method performs one or more database opera-
tions—executing a query, inserting rows, updating rows, deleting rows, or calling
a stored procedure—by executing iBATIS mapped statements.

 Because we are using test-driven development, the task of implementing the
DAOs begins with writing a test. We could write a test that runs against the database,
but that would be slow and complicated. Instead, we will write tests that use mock
objects for the Spring and iBATIS APIs. Once those pass, we will write tests that run
against the database.

 We are going to use the findPendingOrder() method to illustrate how to imple-
ment a DAO method with Spring and iBATIS. This method, which is implemented
by the PendingOrderDAO, retrieves the pending order, its line items, its restaurant,
and its restaurant’s menu items from the database and returns a PendingOrderDTO
containing this data.

Testing DAOs using mock objects
The first step in the process of implementing a DAO method is to write a mock
object test that verifies that the method executes the expected iBATIS statement
and returns the correct PendingOrderDTO. The findPendingOrder() method has to
execute three SQL statements:

344 CHAPTER 9

Using the Transaction Script pattern
1 Retrieve the PendingOrder and restaurant by executing a SQL statement
that does an outer join between the PENDING_ORDER and RESTAURANT
tables.

2 Retrieve the PendingOrder’s line items by executing a SQL SELECT state-
ment that queries the PENDING_ORDER_LINE_ITEM table.

3 If the PendingOrder has a restaurant, retrieve its menu items by executing
a SQL SELECT statement that retrieves the menu items from the
MENU_ITEM table.

The findPendingOrder() method can load a PendingOrder by calling SqlMapCli-
entTemplate.queryForObject() with the name of the SELECT statement that que-
ries the PENDING_ORDER table and the pending order ID arguments. Moreover,
because iBATIS can be configured to execute queries that retrieve related objects,
that call to queryForObject() can execute additional SELECT statements that
retrieve the line items and menu items. As a result, findPendingOrder() only
needs a single test.

 The test shown in listing 9.5 uses a mock SqlMapClientTemplate. It calls find-
PendingOrder() with a pending order ID of 10 and verifies that it calls queryForOb-
ject() with findPendingOrder as the statement name and 10 as arguments. The
test also verifies that findPendingOrder() returns the object that was returned by
queryForObject().

public class PendingOrderDAOIBatisImplMockTests extends
 MockObjectTestCase {

 private Mock mockSqlMapClientTemplate;
 private PendingOrderDAOIBatisImpl dao;
 private PendingOrderDTO pendingOrder;

 protected void setUp() throws Exception {
 super.setUp();
 mockSqlMapClientTemplate =
 new Mock(SqlMapClientTemplate.class);
 SqlMapClientTemplate sqlMapClientTemplate =
 (SqlMapClientTemplate) mockSqlMapClientTemplate.proxy();
 pendingOrder = new PendingOrderDTO();

 dao = new PendingOrderDAOIBatisImpl(sqlMapClientTemplate);
 }

 public void testFindPendingOrder() {

Listing 9.5 PendingOrderDAOIBatisImplMockTests

B Creates mock objects

Implementing the DAOs with iBATIS and Spring 345
 mockSqlMapClientTemplate.expects(once())
 .method("queryForObject")
 .with(eq("findPendingOrder"),
 eq("10"))
 .will(returnValue(pendingOrder));

 PendingOrderDTO result =
 dao.findPendingOrder("10");

 assertSame(pendingOrder, result);
 }

 }

Let’s take a closer look at this listing:

The setUp() method creates a mock SqlMapClientTemplate, a test PendingOrder-
DTO, and a PendingOrderDAOIBatisImpl.

The testFindPendingOrder() method creates an expectation that SqlMapClient-
Template.queryForObject() will be called with a statement name of findPending-
Order and a parameter with the value 10, and then returns the test
PendingOrderDTO.

The test calls the findPendingOrder() method.

The testFindPendingOrder() method asserts that the findOrderCreatePending-
Order() returns the PendingOrderDTO returned by queryForObject().

The test is extremely simple. It requires only a minimal amount of setup and has
no external dependencies. It also runs considerably faster than a test that accesses
the database.

Writing a DAO method
Now that we have written the test, the next step in the process of implementing
the DAO is to write the findPendingOrder() method. The PendingOrderDAO-
IBatisImpl class extends Spring’s SqlMapClientDaoSupport class and defines a
findPendingOrder() method, which uses Spring’s SqlMapClientTemplate to exe-
cute SQL statements:

public class PendingOrderDAOIBatisImpl extends
 SqlMapClientDaoSupport implements PendingOrderDAO {

 public PendingOrderDAOIBatisImpl(
 SqlMapClientTemplate template) {
 setSqlMapClientTemplate(template);
 }

C Sets expectations

D Calls the DAO

Checks return valueE

B

C

D

E

Saves SqlMapClientTemplate

346 CHAPTER 9

Using the Transaction Script pattern
 private PendingOrderDTO
 findPendingOrder(String pendingOrderId) {
 PendingOrderDTO pendingOrderDTO =
 (PendingOrderDTO)
 getSqlMapClientTemplate()
 .queryForObject(
 "findPendingOrder",
 pendingOrderId);
 return pendingOrderDTO;
 }
…
}

In this method, the constructor takes a SQLMapClientTemplate as a parameter and
calls the setter defined by SqlMapClientDaoSupport. The findPendingOrder()
method uses SqlMapClientTemplate to execute the SQL SELECT statements that load
the PendingOrder, its line items, its restaurant, and its restaurant’s menu items.

 This method is extremely simple because iBATIS does all of the work. Let’s
look at how it is configured.

Writing the iBATIS SQL maps
After writing a DAO method, the next step is to write the iBATIS mapped state-
ments that are executed by the DAO to query and update the database. The
mapped statement that is executed by the findPendingOrder() must retrieve not
only the pending order but also its line items, its restaurant, and the restaurant’s
menu items. One straightforward way to accomplish this is to configure iBATIS to
execute the following SQL statements:

select *
from PENDING_ORDER o, RESTAURANT r
where
o.pending_order_id = ?
AND r.restaurant_id (+)= o.restaurant_id

select *
from PENDING_ORDER_LINE_ITEM l, MENU_ITEM mi
where
l.pending_order_id = ?
AND mi.menu_item_id = l.menu_item_id

select *
from MENU_ITEM mi
where mi.restaurant_id = ?

Executes query

Implementing the DAOs with iBATIS and Spring 347
The first SELECT statement is executed when findPendingOrder() calls iBATIS and
retrieves the pending order and its restaurant using an outer join. The other two
statements are automatically executed by the first statement’s result map when it
initializes the PendingOrderDTO and RestaurantDTO objects. The second statement
retrieves the line items and their associated menu items. The third statement
retrieves the menu items for the restaurant. Figure 9.7 shows the statements and
result maps that we must write to execute these statements.

<<statement>>
findPendingOrder

<<result map>>
PendingOrder

ResultMap

<<statement>>
findLineItems

<<statement>>
findMenuItems

uses
creates

PendingOrder
DTO

Restaurant
DTO

creates

executes
executes

MenuItem
DTO

uses

<<result map>>
PendingOrderLine

ItemResultMap

<<result map>>
MenuItemResult

Map

PendingOrder
LineItem

DTO

uses

creates creates

select *
from
FTGO_PENDING_ORDER o,
FTGO_RESTAURANT r
where o.pending_order_id = ?
 AND r.restaurant_id (+)=
 o.restaurant_id

select *
from FTGO_PENDING_ORDER_LINE_ITEM l,
FTGO_MENU_ITEM mi
where l.pending_order_id = ?
 AND mi.menu_item_id = l.menu_item_id

select *
from FTGO_MENU_ITEM mi
where mi.restaurant_id = ?

Figure 9.7 Mapped statements and result maps required to load a pending order, its line items,
restaurant, and menu items

348 CHAPTER 9

Using the Transaction Script pattern
The statements and result maps shown in this diagram are as follows:

■ findPendingOrder is a statement that retrieves the pending order and its res-
taurant.

■ PendingOrderResultMap is the result map for the ResultSet returned find-
PendingOrder statement. It maps the columns of this ResultSet to properties
of a PendingOrderDTO and RestaurantDTO. It also executes the nested SQL
SELECT statements to retrieve the line items and menu items.

■ findLineItems is a statement that retrieves the PendingOrder’s line items.

■ PendingOrderLineItemResultMap maps the columns of the ResultSet

returned by findLineItems to properties of the PendingOrderLineItemDTO.

■ findMenuItems is a statement that retrieves the restaurant’s menu items.

■ MenuItemResultMap is a result map that maps the columns of the ResultSet
returned by findMenuItems to the properties of the MenuItemDTO.

Listing 9.6 shows an excerpt of the iBATIS XML file that defines these statements
and result maps.

<sqlMap>

<select id="findPendingOrder"
 parameterClass="java.lang.String"
bbbbbbbbresultMap="PendingOrderResultMap">
 select *
 from PENDING_ORDER o, RESTAURANT r
 where
 o.pending_order_id = #value#
 AND r.restaurant_id (+)= o.restaurant_id
</select>

<resultMap id="PendingOrderResultMap"
 class="net.chrisrichardson.foodToGo…PendingOrderDTO">
 <result property="pendingOrderId" column="PENDING_ORDER_ID"/>
 <result property="state" column="STATE"/>
 <result property="deliveryTime" column="DELIVERY_TIME"/>
 <result property="deliveryAddress.street1"
 column="DELIVERY_STREET1"/>
 <result property="deliveryAddress.street2"
 column="DELIVERY_STREET2"/>
 <result property="deliveryAddress.city"
 column="DELIVERY_CITY"/>
 <result property="deliveryAddress.state"
 column="DELIVERY_STATE"/>

Listing 9.6 Excerpt of PendingOrder.xml

B

C

Implementing the DAOs with iBATIS and Spring 349
 <result property="deliveryAddress.zip" column="DELIVERY_ZIP"/>
 <result property="restaurant.restaurantId"
 column="RESTAURANT_ID"/>
 <result property="restaurant.name" column="NAME"/>
 <result property="lineItems"
 column="PENDING_ORDER_ID"
 select="findLineItems"/>
 <result property="restaurant.menuItems"
 column="RESTAURANT_ID"
 select="findMenuItems"/>
</resultMap>

<select id="findLineItems"
 parameterClass="java.lang.String"
 resultMap="PendingOrderLineItemResultMap">
 select *
 from PENDING_ORDER_LINE_ITEM l, MENU_ITEM mi
 where
 l.pending_order_id = #value:NUMERIC#
 AND mi.menu_item_id = l.menu_item_id
</select>

<resultMap
 id="PendingOrderLineItemResultMap"
 class="net.chrisrichardson…PendingOrderLineItemDTO">
 <result property="quantity" column="QUANTITY"/>
 <result property="index" column="LINE_ITEM_INDEX"/>
 <result property="menuItem.menuItemId" column="MENU_ITEM_ID"/>
 <result property="menuItem.name" column="NAME"/>
 <result property="menuItem.price" column="PRICE"/>
</resultMap>

<select id="findMenuItems"
 parameterClass="java.lang.String"
 resultMap="MenuItemResultMap">
 select *
 from MENU_ITEM mi
 where mi.restaurant_id = #value:NUMERIC#
</select>

<resultMap id="MenuItemResultMap"
 class="net.chrisrichardson.foodToGo.placeOrderTransactionScripts.
bbbbbbbb➥ details.MenuItemDTO">
 <result property="menuItemId" column="MENU_ITEM_ID"/>
 <result property="name" column="NAME"/>
 <result property="price" column="PRICE"/>
</resultMap>

</sqlMap>

D

E

F

G

H

350 CHAPTER 9

Using the Transaction Script pattern
Let’s look at the details of the top-level mapped statement and its result map:

The findPendingOrder mapped statement defines the SQL SELECT statement that
retrieves the pending order and its restaurant. The pending order is specified by a
String parameter and the result is constructed using the PendingOrderResultMap
result map.

The PendingOrderResultMap result map specifies the mapping between the prop-
erties of the PendingOrderDTO and RestaurantDTO beans and columns of the result
set returned by the query that finds the pending order.

The result map also specifies that the line items and the restaurant’s menu items
should be retrieved using other nested mapped statements.

The findLineItems mapped statement defines the SELECT statement that retrieves
the pending order’s line items.

The PendingOrderLineItemResultMap result map is used by the findLineItems
mapped statement to create the PendingOrderLineItemDTOs.

The findMenuItems mapped statement defines the SELECT statement that retrieves
the restaurant’s menu items.

The MenuItemResultMap result map is used by the findMenuItems mapped state-
ment to create the MenuItemDTOs.

The details of other <select> statements and <resultMap> definitions are similar.

Testing iBATIS maps
The final step in the process of implementing a DAO is to write tests for the iBATIS
maps and the SQL statements. Because iBATIS replaces potentially complex DAOs
with simple DAOs and XML mapping files, testing the DAOs can be extremely
straightforward and can be accomplished with mock objects. However, it is also
important to write tests for the iBATIS maps and SQL statements because they imple-
ment a lot of functionality. These tests must verify the correctness of three things:

■ The iBATIS statements, which specify how object properties map to SQL
statement parameters

■ The SQL statements, which query and update the database

■ The iBATIS result maps, which specify how database columns map to object
properties

There are a variety of approaches that you can use to test the iBATIS maps and SQL
statements. The most thorough approach is to write to one or more tests for each

B

C

D

E

F

G

H

Implementing the DAOs with iBATIS and Spring 351
mapped statement that executes against the database. A test for a SELECT statement
populates the database with test data, executes the query, and verifies that it returns
the expected result. Similarly, a test for an UPDATE statement populates the database,
executes the update, and verifies the contents of the database. A good tool for writ-
ing these kinds of tests is DbUnit [DbUnit], which is an extension to JUnit that pro-
vides methods for initializing the database and verifying its contents. For example,
here is the outline of a test that for the findPendingOrder mapped statement. The
test uses the DbUnit method DatabaseOperation.CLEAN_INSERT.execute() to ini-
tialize the database with the data from the XML file pending-order-1.xml and exe-
cutes the query using a SqlMapClientTemplate:

public class DBUnitIBatisExampleTests extends TestCase {

 private DatabaseConnection dbUnitConnection;
 private SqlMapClientTemplate sqlMapClientTemplate;

 public void setUp() throws Exception { … };

 public void test() throws Exception {
 FlatXmlDataSet dataSet = new FlatXmlDataSet(
 getClass().getResourceAsStream(
 "pending-order-1.xml"));
 DatabaseOperation.CLEAN_INSERT.execute(
 dbUnitConnection, dataSet);

 PendingOrderDTO pendingOrder =
 (PendingOrderDTO) sqlMapClientTemplate
 .queryForObject("findPendingOrder", "1");

 assertNotNull(pendingOrder);
…

 }
…
}

For more information on how to write these kinds of tests, see the DbUnit docu-
mentation and the excellent book JUnit Recipes [Rainsberger 2004].

 The downside of this approach is that the tests are time consuming to write
and execute. Mapped statements often require multiple tests to verify different
scenarios. One simplification, which is often a good way to start, is to write tests
that execute each SQL statement once without verifying either the return value or
the database. This is relatively easy to do and catches many common errors. In
addition, the tests will execute fairly quickly.

352 CHAPTER 9

Using the Transaction Script pattern
 Another simplification, which lessens the need for the automated tests to verify
the SQL statements, is to visually inspect the mapping document and to execute
each SQL statement by copying and pasting the SQL statement into a command-
line tool such as Oracle SQL*Plus. The trouble with this manual approach is that
it will not catch errors caused by changes to the Java code or the database schema.
It also relies on the developer to manually retest the mapping documents after
making changes. One way to make this testing approach more robust is to use the
Gold Master approach described in JUnit Recipes. After manually testing the SQL
statements, you write tests that fail whenever the SQL statement is changed, which
will remind you to recheck the statement. You must still write tests that execute
the statements, but they do not need to test the SQL statements as thoroughly.

 Tests such as the one for the findOrder mapped statement must verify that the
result map constructs the objects correctly. The most direct approach is to populate
the database with test data, execute the query, and verify that iBATIS returns the cor-
rect object. The trouble with this approach is that the tests can be difficult to write
and slow to execute. An alternative approach is to write tests that use the iBATIS
mapping metadata in a similar way to the tests that we wrote to verify the Hibernate
and JDO O/R mapping. As with the JDO and Hibernate tests, the iBATIS tests must
use internal APIs. For example, let’s look at an example of a test for the findOrder
mapped statement and its result map. The test gets the metadata describing the
mapped statement from the SqlMapClient and makes assertions about it:

public class IBatisMappingTests extends TestCase {

 private SqlMapClient sqlMapClient;

 public void setUp() throws Exception { … };

 public void test () throws Exception {
 mappedStatement = ((ExtendedSqlMapClient)sqlMapClient)
 .getMappedStatement("findPendingOrder");

 assertEquals(String.class,
 mappedStatement
 .getParameterClass());

 ResultMap resultMap = mappedStatement
 .getResultMap();
 assertEquals(PendingOrderDTO.class,
 resultMap
 .getResultClass());

 resultMappings = resultMap.getResultMappings();

Verifies
parameter type

Verifies
result type

Implementing the DAOs with iBATIS and Spring 353
 BasicResultMapping idMapping =
 findBasicResultMapping(
bbbbbbbb➥ "pendingOrderId");
 assertEquals("PENDING_ORDER_ID",
 idMapping
 .getColumnName());

 BasicResultMapping lineItemsMapping =
 findBasicResultMapping("lineItems");
 assertEquals("PENDING_ORDER_ID",
 lineItemsMapping.getColumnName());
 assertEquals("findLineItems",
 lineItemsMapping
 .getStatementName());
 }

 private BasicResultMapping findBasicResultMapping(
 String propertyName) {
 for (int i = 0; i < resultMappings.length; i++) {
 ResultMapping mapping = resultMappings[i];
 if (mapping.getPropertyName().equals(
 bbbbpropertyName)) {
 return (BasicResultMapping) mapping;
 }
 }
 fail("no mapping for property: "
 + propertyName);
 return null;
 }

…
}

This test verifies that the findOrders mapped statement takes a string parameter,
and then verifies that the result map creates a PendingOrderDTO. Next, it checks
that the pendingOrderId property is set to the PENDING_ORDER column, and that the
lineItems property is set to the result of executing a nested statement called
findLineItems.

 These kinds of tests are easy to write and are a good way of testing the result
maps. You still need to test the SQL statements and verify that the parameters are
substituted correctly into the SQL statement.

 Each one of these testing strategies makes different trade-offs between devel-
opment time, execution time, and effectiveness. Which option you should choose
depends primarily on how much time you are willing to invest in testing and the
likelihood of bugs. Unfortunately, I’ve found that writing database-level tests for
DAOs that use SQL to be significantly more difficult and time consuming than
writing tests for repositories that use an ORM framework. You need to write much

Verifies
pendingOrderId
property

Verifies lineItems
property

354 CHAPTER 9

Using the Transaction Script pattern
more elaborate tests that run against the database—yet another reason to use SQL
only if it is absolutely necessary.

 Let’s now look at how to deploy the transaction scripts.

9.5 Configuring the transaction scripts using Spring

We have almost finished implementing the business logic for this use case. The
final step in the process of implementing transaction scripts is to write the Spring
bean definitions that wire together the various classes and apply the AOP intercep-
tors that manage transactions and JDBC connections.

9.5.1 How Spring manages JDBC connections and transactions

Spring has an AOP-based mechanism for managing JDBC connections and trans-
actions. It uses the TransactionInterceptor class, which you saw earlier in
chapter 7, with a DataSourceTransactionManager, which is a Spring Platform-
TransactionManager that manages transactions using JDBC. Figure 9.8 shows these
classes and interfaces.

JDBC

Spring

Transaction
Interceptor

<<interface>>
Platform

Transaction
Manager

DataSource
Transaction

Manager

Connection getConnection()

<<interface>>
DataSource

setAutoCommit()
commit()
rollback()
close()
...

<<interface>>
Connection

Figure 9.8 Spring classes for managing JDBC connections and transactions

Configuring the transaction scripts using Spring 355
DataSourceTransactionManager is configured with a JDBC DataSource. When
called by the TransactionInterceptor to begin a transaction, it gets a connection
from the DataSource and ensures that auto-commit is disabled. It also binds the
JDBC connection to the thread for use by the SqlMapClientTemplate. Later when
it is called by the TransactionInterceptor to commit the transaction, the Data-
SourceTransactionManager calls Connection.commit(), closes the connection, and
unbinds it from the thread.

 Making the transaction scripts transactional is easy. In the Spring bean defini-
tions you configure a TransactionInterceptor to use a DataSourceTransaction-
Manager and apply it to the transaction script class. Let’s see how to do this.

9.5.2 The Spring bean definitions

Figure 9.9 shows the Spring beans that we must define to configure the Place-
OrderTransactionScripts class and make it transactional. In addition to configur-
ing the TransactionInterceptor bean, it defines beans for the DAOs and the
SqlMapClient and SqlMapClientTemplate classes.

PlaceOrder
Transaction

Scripts

PendingOrder
DAO

RestaurantDAO

SqlMapClient
Template

SqlMapClient

Transaction
Interceptor

Transaction
Manager

APPLICATION
CLASSES

SPRING
FRAMEWORK
CLASSES

iBATIS CLASSES

Presentation Tier

JDBC CLASSES
DataSource

PlaceOrder
Transaction
ScriptsProxy

Creator

DataSource

Figure 9.9
The Spring beans required to deploy the
PlaceOrderTransactionScripts

356 CHAPTER 9

Using the Transaction Script pattern
These bean definitions instantiate the transaction script class and the DAOs along
with the SqlMapClientTemplate and the SqlMapClient. They also apply the Trans-
actionInterceptor to the transaction scripts and create the DataSource. Listing 9.7
shows these Spring bean definitions.

<beans>

 <bean id="SqlMapClient"
 class="org.springframework.orm.iBatis.
bbbbbbbbb➥ SqlMapClientFactoryBean">
 <property name="configLocation" value="/sqlMap-config.xml" />
 <property name="dataSource" ref="DataSource" />
 </bean>

 <bean id="SqlMapClientTemplate"
 class="org.springframework.orm.iBatis.SqlMapClientTemplate">
 <property name="exceptionTranslator"
 ref="ExceptionTranslator" />
 <property name="sqlMapClient" ref="SqlMapClient" />
 </bean>

 <bean id="PendingOrderDAO"
 class="net.chrisrichardson.foodToGo.placeOrderTransactionScripts.
bbbbbbbbbb➥ dao.PendingOrderDAOIBatisImpl">
 <constructor-arg ref="SqlMapClientTemplate" />
 </bean>

 <bean id="RestaurantDAO"
 class="net.chrisrichardson.foodToGo.placeOrderTransactionScripts.
bbbbbbbb➥ dao.RestaurantDAOIBatisImpl">
 <constructor-arg ref="SqlMapClientTemplate" />
 </bean>

 <bean id="PlaceOrderTransactionScripts"
 class="net.chrisrichardson.foodToGo.placeOrderTransactionScripts.
bbbbbbbb➥ PlaceOrderTransactionScriptsImpl">
 <constructor-arg ref="PendingOrderDAO" />
 <constructor-arg ref="RestaurantDAO" />
 </bean>

 <bean id="DataSourceTransactionInterceptor"
 class="org.springframework.transaction.interceptor.
bbbbbbbb➥ TransactionInterceptor">
 <property name="transactionManager"
 ref="DataSourceTransactionManager" />
 <property name="transactionAttributeSource">

Listing 9.7 placeOrderTransactionScripts-iBatis-beans.xml

B

C

D

E

F

G

Configuring the transaction scripts using Spring 357
 <value>
 net.chrisrichardson.foodToGo.placeOrderTransactionScripts.
bbbbbb➥ PlaceOrderTransactionScriptsImpl.*=PROPAGATION_REQUIRED
 </value>
 </property>
 </bean>

 <bean id="PlaceOrderTransactionScriptsProxyCreator"
 class="org.springframework.aop.framework.autoproxy.
bbbbbbbbb➥ BeanNameAutoProxyCreator">
 <property name="beanNames">
 <list>
 <idref bean="PlaceOrderTransactionScripts" />
 </list>
 </property>
 <property name="interceptorNames">
 <list>
 <idref bean="DataSourceTransactionInterceptor" />
 </list>
 </property>
 </bean>

 <bean id="DataSourceTransactionManager"
 class="org.springframework.jdbc.datasource.
bbbbbbbbb➥ DataSourceTransactionManager">
 <property name="dataSource" ref="DataSource" />
 </bean>

bb<bean id="DataSource"
 class="org.apache.commons.dbcp.BasicDataSource">
 bb<property name="driverClassName">
bbbbBB<value>oracle.jdbc.driver.OracleDriver</value>
 bb</property>
 bb<property name="url">
bbbbBB<value>jdbc:oracle:thin:@gringots:1521:db92</value>
 bb</property>
bbbb<property name="username">
 BB<value>ftgouser</value></property>
 bb<property name="password">
bbbbBB<value>ftgopassword</value>
 bb</property>
bb</bean>

</beans>

H

I

J

358 CHAPTER 9

Using the Transaction Script pattern
Here is an explanation of what is happening in this listing:

Create an iBATIS SqlMapClient using the iBATIS descriptor files that are listed in
the configuration file sqlMap-config.xml:

<sqlMapConfig>
 <sqlMap resource="PendingOrder.xml" />
</sqlMapConfig>

Create the Spring SqlMapClientTemplate.

Create PendingOrderDAOImpl and wire it to the SqlMapClientTemplate.

Create the RestaurantDAOImpl and wire it to the SqlMapClientTemplate.

Create the PlaceOrderTransactionScripts injecting the PendingOrderDAO and
RestaurantDAO.

Configure the TransactionInterceptor to use the DataSourceTransactionManager.

Apply the DataSourceTransactionInterceptor to the PlaceOrderTransaction-
Scripts.

Create a DataSourceTransactionManager that begins and commits a transaction
that uses a JDBC connection that is bound to the thread for use by the DAOs.

Create a JDBC DataSource implemented using Database Connection Pool (DBCP),
which is an open source connection pool.

When the presentation tier asks the Spring lightweight container for PlaceOrder-
TransactionScripts, Spring will instantiate all of these components and return a
PlaceOrderTransactionScripts that is wrapped with a TransactionInterceptor
that executes each method within a transaction.

 The application’s classes, along with the Spring bean definitions and the iBA-
TIS configuration files, would then be packaged and deployed as part of a web
application in a web container.

9.6 Summary

The Transaction Script pattern is a procedural approach that organizes the busi-
ness logic into a set of transaction scripts. A transaction script is a method that
accesses the database and performs computations and updates the database. There
is usually one transaction script for each request from the presentation tier, and
they are grouped together to form a transaction script class. For example, the trans-
action script version of the Place Order use case consists of a transaction script class
that defines a separate transaction script for each step of the use case.

B

C

D

E

F

G

H

I

J

Summary 359
 The Transaction Script pattern concentrates behavior in the transaction scripts
rather than distributing it among multiple domain classes. This pattern tends not
to work well when the business logic is complex because transaction scripts consist
of procedural code, which is usually hard to understand and maintain. You also
have to write a lot more database access code when using this pattern. Conse-
quently, this pattern should only be used when either the application’s business
logic is extremely simple or when it is not possible to efficiently access the data-
base using a persistence framework.

 Transaction scripts should not access the database directly because that would
mix business logic with database code and make development and testing harder.
Instead, they should use DAOs that encapsulate the database access code. The
transaction scripts are configured with the DAOs via constructor parameters,
which enables them to be developed and tested using mock DAOs.

 The DAOs used by the transaction scripts could use JDBC. However, a much
better approach is to use the iBATIS framework, which significantly reduces the
amount of code required to execute SQL statements. iBATIS takes care of map-
ping Java objects to SQL statement parameters, calling JDBC to execute the SQL
statement, and mapping the ResultSet to one or more Java objects. Therefore,
many DAO methods consist of a single line of code that calls an iBATIS method.

 When developing an application’s business logic, you do not have to exclu-
sively use either the Domain Model pattern or the Transaction Script pattern. You
should instead choose the pattern that is most appropriate for each request. You
could, for example, implement the first step of a use case using a transaction
script that retrieves a list of orders using a complex SQL query and implement the
rest of use case using domain model-based business logic that manipulates indi-
vidual orders.

 Now that we have covered the Transaction Script pattern, the next chapter
tackles implementing POJOs with EJB 3.

Implementing
POJOs with EJB 3
This chapter covers
■ Persisting a domain model with entity beans
■ Implementing façades with session beans
■ Integrating Spring and EJB dependency

injection
360

Overview of EJB 3 361
Most of this book has focused on implementing POJO business logic using the
lightweight alternatives to EJB: Spring, Hibernate, and JDO. So why discuss EJBs?
After all, an EJB as defined by the EJB 2 specification is the ultimate anti-POJO. It
is a heavyweight object that implements special interfaces and can only run
inside the EJB container. To use the valuable features of EJB, which include stan-
dardized declarative transaction management, distributed transactions, and per-
sistence, developers had to struggle with excessive complexity and long edit-
compile-debug cycles.

 However, all of this has changed with EJB 3, which embraces POJOs and is a rad-
ical improvement over its predecessor. EJB 3 session beans, entity beans, and mes-
sage-driven beans are POJOs and do not implement any special interfaces.
Deployment and configuration is considerably simpler. In addition, even though
entity beans are defined by the EJB expert group, they are intended to be the stan-
dard persistence framework for both J2EE and J2SE. As a result, EJB 3 provides the
valuable features of EJB 2 but with less complexity and pain. It is destined to be
both an important and an effective technology for developing enterprise Java
applications. Let’s see how EJB 3 works.

10.1 Overview of EJB 3

EJB is intended to be the standard component architecture for building Java busi-
ness applications. The primary goal of EJB 3, which is part of Java Enterprise Edi-
tion 5 (JEE 5), is to make EJB easier to use, and it incorporates some of the
lightweight concepts that you encountered earlier in this book. EJB 3 still provides
session, message-driven, and entity beans, but how you write them and configure
them is very different and a lot simpler. EJB 3 Enterprise JavaBeans are POJOs,
which makes them easier to write. You have the choice of using either Java 5 anno-
tations or an XML deployment descriptor to configure an EJB. EJB 3 has sensible
defaults for many bean attributes, such as the JNDI name and transactional behav-
ior, which means that you do not have to explicitly specify every aspect of the
bean. In addition, session and message-driven beans can use dependency injec-
tion instead of JNDI calls to access other beans and resources, which simplifies the
code and further decouples it from the EJB container. EJB 3 has a powerful ORM
mechanism that incorporates many of the ideas from Hibernate, JDO, and Oracle
TopLink. What’s more, EJB 3 entity beans can run outside the container, which
makes testing much easier.

 EJB 3 as defined by the June 2005 public draft [EJB 3 June 2005] also has some
significant limitations. The O/R mapping lacks necessary features such as collec-
tions of primitive types. Dependency injection only supports injecting JNDI objects

362 CHAPTER 10

Implementing POJOs with EJB 3
into EJBs. In addition, developing EJBs is still more complicated than developing
with lightweight technologies. In this section, we provide an overview of EJB 3 as
defined by the June 2005 public draft specification and describe the key improve-
ments as well as the remaining limitations and how to work around them.

10.1.1 Key improvements in EJB 3

EJB 3 has several key improvements that address deficiencies in EJB 2. Let’s look at
each one in turn.

EJBs are POJOs
To implement an EJB 2 bean, you must write classes and interfaces that are coupled
to the EJB container. For example, to implement an EJB 2 session bean you must
write a bean class that implements the SessionBean interface, a home interface
that extends EJBHome, and a component interface that extends either EJBObject or
EJBLocalObject. Because of the dependency on these interfaces, an EJB 2 bean can
only run inside the EJB container. It is anything but a POJO.

 Implementing EJB 3 beans is much simpler because EJB 3 eliminates interfaces
such as EJBHome and SessionBean. EJB 3 beans are POJOs that do not extend or
implement those EJB-specific interfaces. For example, an EJB 3 session bean con-
sists of a plain old Java interface, which defines its public methods, and a POJO
bean class, which implements the interface. A message-driven bean is even sim-
pler and consists of only a POJO bean class.

 An entity bean also consists of just the POJO bean class. Unlike EJB 2 it’s a con-
crete class because you don’t define abstract accessors for the container-managed
fields and relationship. The entity bean’s fields or JavaBean-style properties are
mapped to the database using annotations or entries in the deployment descrip-
tor. An entity bean is instantiated using the new operator and persisted using the
EJB EntityManager, which is similar to a JDO PersistenceManager or Hibernate
Session and is described a bit later.

 Because of these changes in EJB 3, you have to write a lot less code when devel-
oping EJB 3. As an added bonus, your code is a lot less dependent on the EJB con-
tainer. Later in this chapter you will see how POJOs developed earlier in this book
can be deployed as EJBs.

Entity beans can run outside the EJB container
EJB 2 entity beans are inherently server-side components and can only run within
the EJB container. To test an entity bean, you have to wait for it to deploy in the EJB
container, which slows down the edit-compile-debug cycle. One drastic change in
the EJB 3 specification is that entity beans are no longer just a server-side technology.

Overview of EJB 3 363
They are intended to be the standard Java object persistence mechanism and can
be used both inside and out of the application server. EJB 3 persistence works out-
side the application server in the same way as JDO and Hibernate. Even if you are
only developing server applications, this is an extremely valuable feature because it
means that you can test entity beans without deploying them in the EJB container.

Simpler configuration
Another important improvement in EJB 3 is that you are no longer required to
write complex XML deployment descriptors to describe a bean’s configuration.
Instead, EJB 3 lets you configure a bean using Java 5 annotations. An annotation is
a Java 5 language feature that associates extra data with a program element such
as a class or method. This data can be read by tools and frameworks such as the
EJB container. Annotations are often easier to use than an XML deployment
descriptor because they are located next to the program element that they
describe. What’s more, because EJB 3 has sensible defaults for an EJB’s properties
you often only have to use a few annotations to turn a POJO into an EJB.

 For example, the following code fragment shows the annotations on the
PlaceOrderFacade interface and PlaceOrderFacadeImpl class that will deploy the
PlaceOrderFacade from chapter 7 as a stateless session bean:

@Local
public interface PlaceOrderFacade {
…
}

@Stateless
public class PlaceOrderFacadeImpl
 implements PlaceOrderFacade {
…
}

The @Local annotation specifies that the PlaceOrderFacade interface is a local EJB
interface, and the @Stateless annotation specifies that PlaceOrderFacadeImpl is a
stateless session bean. By default, its JNDI name is the fully qualified class name of
the local EJB interface and the EJB container uses container-managed transactions
with a transaction attribute of REQUIRED. If necessary, you can override the defaults
by using additional annotations. The EJB container reads the information speci-
fied by the annotations and uses it to deploy the EJB.

 Configuring an entity bean is equally straightforward. You annotate the POJO
class with an @Entity annotation and annotate its fields or properties to map them
to the database. For example, here is part of the code for the PendingOrder EJB:

364 CHAPTER 10

Implementing POJOs with EJB 3
@Entity(access=AccessType.FIELD)
class PendingOrder {

 @Id(generate = GeneratorType.AUTO)
 private int id;

 private int state = PendingOrder.NEW;

 @ManyToOne
 private Restaurant restaurant;

 @OneToMany(cascade = CascadeType.ALL)
 private List<PendingOrderLineItem> lineItems
 = new ArrayList<PendingOrderLineItem>();

 @ManyToOne
 private Coupon coupon;
…

The @Entity annotation specifies that the PendingOrder class is an entity bean,
and the access=AccessType.FIELD member tells the EJB container to map its fields
rather than its properties to the database. The @Id annotation identifies the pri-
mary key field and tells the EJB container to generate a primary key. The @OneTo-
Many annotation specifies that the lineItems field is a one-to-many relationship,
and the @ManyToOne annotation specifies that the restaurant and coupon fields are
many-to-one relationships. The EJB 3 persistence mechanism uses the information
specified by the annotations in the same way that the JDO or Hibernate imple-
mentation uses the XML O/R mapping documents.

 This example uses the default EJB 3 O/R mapping rules that generate default
table and column names and define the mappings for relationships. The
PendingOrder class is mapped to the PENDINGORDER table, the id field is
mapped to the ID column, and the lineItems field is mapped to a join table
called PENDING_ORDER_PENDING_ORDER_LINE_ITEM, which has foreign keys
to the PENDINGORDER and PENDINGORDERLINEITEM tables. You can, however,
use annotations to specify the names of the tables and columns and change how
some relationships are mapped. Later in this chapter you’ll see examples of how
to do that.

 EJB 3 encourages developers to use annotations to define an EJB, but you can
still use XML deployment descriptors. Whether you use annotations or deploy-
ment descriptors is largely a matter of personal preference, but there are situa-
tions in which deployment descriptors are useful. For example, the annotations
that define the O/R mapping can be verbose, and it can be easier to use a deploy-
ment descriptor instead. Another potential use for a deployment descriptor is to

Overview of EJB 3 365
override the annotations for an EJB. You could, for example, use a deployment
descriptor to map an entity bean to a different database schema. As of this writing,
EJB 3 deployment descriptors are still a work in progress and so we won’t discuss
them further.

Dependency injection
An EJB rarely works in isolation. It typically uses resources such as JDBC Data-
Sources and even other EJBs to fulfill its responsibilities. An EJB 2 bean uses JNDI
to look up these resources and EJBs. The problem with using JNDI is that in addi-
tion to requiring you to write the lookup code it couples the EJB to the applica-
tion server environment. EJB 3 fixes this problem for session and message-driven
beans by using dependency injection to encapsulate the JNDI lookup. It defines
several annotations that you can use to identify a field or setter method as requir-
ing a reference to an EJB or resource. When the EJB container instantiates a ses-
sion or message-driven bean, it initializes the fields and calls the setters with
objects obtained from JNDI. For example, here is how the PlaceOrderFacadeImpl
EJB can use field injection to obtain a reference to the PlaceOrderService EJB:

@Stateless
class PlaceOrderFacadeImpl implements PlaceOrderFacade {

 @EJB
 PlaceOrderService service;
…

The @EJB annotation tells the EJB container to set the service field to a reference
to the PlaceOrderService, which is another EJB deployed in the container. By
default, EJB 3 derives the JNDI name from the type of the field or setter parameter,
but if necessary it can be specified in the annotation.

 EJB 3 dependency injection is extremely useful. By eliminating the JNDI look-
ups, it simplifies session and message-driven beans and reduces their dependency
on the application server environment. It is also quite concise, unlike Spring
dependency injection, which requires you to write XML to configure the beans.
There are, however, some limitations.

Significantly improved O/R mapping
Historically, the EJB CMP, which is the EJB equivalent of persistent objects, has
been very weak. For example, EJB 1 CMP did not support relationships and it
wasn’t until EJB CMP 2.1 that the query language supported sorting! EJB 3 persis-
tence is a huge improvement over EJB 2 CMP. It has many features that were lack-
ing from EJB 2, including the following:

366 CHAPTER 10

Implementing POJOs with EJB 3
■ A standardized O/R mapping mechanism

■ Support for inheritance

■ Embedded objects whose fields are mapped to the same table as the entity
bean’s fields

■ Optimistic locking with version numbers

EJB 3 also enhances the EJB query language with new features such as Hibernate-
style fetch joins for eagerly loading objects and bulk update and delete. In addi-
tion, queries can be defined either statically or generated dynamically.

Improved persistence API
As I mentioned earlier, EJB 3 has a new and improved persistence API that is quite
similar to the APIs provided by JDO and Hibernate. As figure 10.1 shows, the API
consists of interfaces that play the role of connection factory, connection, transac-
tion, and query. There is also a Persistence class that provides methods for creat-
ing the EJB 3 equivalent of the connection factory.

 The EntityManager replaces the entity bean home interfaces and is equivalent
to the JDO PersistenceManager and Hibernate Session. It defines methods for
creating, deleting, and querying entity beans. For example, the create() method

create()
remove()
find()
Query createQuery()
Query createNamedQuery()
EntityTransaction
getTransaction()
...

<<interface>>
EntityManager

setParameter()
List getResultList()
executeUpdate()
...

<<interface>>
Query

<<creates>>

createEntityManager()
close()
...

EntityManager
Factory

createEntityManagerFactory() {static}
...

Persistence

begin()
commit()
rollback()
...

Entity
Transaction

<<creates>>

<<creates>>

<<creates>>

Figure 10.1 The EJB 3 persistence API

Overview of EJB 3 367
makes an entity bean persistent, remove() deletes an entity bean, and find()
retrieves an entity bean by its primary key.

 The Query interface is equivalent to the Hibernate or JDO Query interfaces. It
defines methods for executing queries, bulk deletes, and bulk updates. An appli-
cation creates a Query by calling factory methods defined by the EntityManager
such as createQuery(), which creates a Query from a query string, and create-
NamedQuery(), which creates one from a named query. The Query interface defines
several methods, including setParameter(), which sets a query parameter; get-
ResultList(), which executes a query and returns a list of results; and execute-
Update(), which executes an update or delete statement. For example, here is a
code fragment that shows how an application can execute an EJB 3 named query:

EntityManager entityManager = …;
Query query = entityManager
 .createNamedQuery("Restaurant.findAvailableRestaurants");
…
query.setParameter("dayOfWeek", new Integer(dayOfWeek));
query.setParameter("hour", new Integer(hour));
query.setParameter("minute", new Integer(minute));
query.setParameter("zipCode", new Integer(zipCode));
List result = query.getResultList();

The application calls EntityManager.createNamedQuery() to create the query, sets
some parameters, and executes the query by calling Query.getResultList().

 The EntityManagerFactory interface is equivalent to a Hibernate Session-
Factory or a JDO PersistenceManagerFactory. It has a createEntityManager()
method that creates an EntityManager. J2EE applications will typically use depen-
dency injection to access an EntityManager, but client-side code, most notably test
cases, needs to explicitly create an EntityManager using the EntityManager-
Factory. Client-side code creates an EntityManagerFactory by calling Persis-
tence.createEntityManagerFactory(), which is a static method.

 The EntityTransaction interface is equivalent to the Transaction interfaces
provided by Hibernate and JDO. The application gets the EntityTransaction
from the EntityManager and calls its methods to control transactions. J2EE appli-
cations will most likely use container-managed transactions, but client-side tests
will use EntityTransaction.

 As you can see, the EJB 3 persistence interface is completely different from the
EJB 2 equivalent. It’s very similar to JDO and Hibernate APIs. Later in this chapter,
you will see examples of how to use it. Let’s now look at EJB 3 detached objects.

368 CHAPTER 10

Implementing POJOs with EJB 3
Detached objects
EJB 2 applications use DTOs to exchange data between the presentation tier and
the business tier. Developing and maintaining the DTOs and the code that creates
them is often a significant amount of work. It is also quite tedious. EJB 3 eliminates
most uses of DTOs by supporting Hibernate-style detached objects. When a trans-
action ends, all entity beans that were loaded during the transaction are automat-
ically detached and can be returned to the presentation tier. The presentation tier
can also modify a detached entity bean and then pass it back to the business tier,
which can reattach it to update the database.

 So as you can see, EJB 3 is significantly better than EJB 2. If you have never used
a lightweight technology such as Spring, Hibernate, or JDO, you will be pleasantly
surprised by how easy it is to use. But, as of this writing, when compared to those
lightweight technologies EJB 3 still has some significant issues and drawbacks.
Let’s take a look.

10.1.2 Key limitations of EJB 3

Like every technology, EJB 3 has some limitations and issues that make develop-
ment more difficult. Some are limitations of the ORM mechanism as described by
the June 2005 public draft and will likely be fixed before the final version of the
specification. Other issues, such as the development time complexity that lurks
beneath the surface, are an inherent part of the EJB concept itself. They are
caused by the reliance of session and message-driven beans on the EJB container
and application server-side technologies such as JNDI. Let’s review each of the
issues and drawbacks.

Limited support for collections
In the radio series “Hitchhiker’s Guide to Galaxy,” Ford Prefect and Arthur Dent
get stranded on Earth two million years in the past with the Golgafrinchams. After
a year or so, the Golgafrinchams, who are the human race’s ancestors, have failed
to discover fire or invent the wheel. The development subcommittees responsible
for these two inventions cannot decide how people will use fire or what color
wheels should be. As you can imagine, Ford and Arthur were very frustrated.

 I sometimes feel as frustrated about the collection support in EJB 3. It’s certainly
much better than what is in EJB 2, but it is still inferior compared to JDO and Hiber-
nate. For example, EJB 3 only supports collections of entities. You cannot, for
example, have collections such as Set<String> or Set<Integer>, which are quite
common in a POJO domain model and are supported by Hibernate and JDO. As
you will see later, you have to replace these kinds of collections with collections of
entity beans that wrap the value, which often requires a lot of extra code.

Overview of EJB 3 369
 Another limitation of the EJB 3 O/R mapping is that although it supports lists it
does not guarantee to preserve the ordering unless you use the @OrderBy annota-
tion. The @OrderBy annotation specifies how to sort the list when it is retrieved
from the database. You can either sort by the primary key of the element or by a
field or property. This means that, for example, in order to persist Restau-
rant.menuItems, which is a list of MenuItems, you must add an index field to the
MenuItem class and write code to maintain it:

@Entity(access=AccessType.FIELD)
public class Restaurant {
 …
 @OneToMany(cascade = CascadeType.ALL, fetch = FetchType.LAZY)
 @OrderBy("index")
 private List<MenuItem> menuItems;
 …
}

@Entity (access=AccessType.FIELD)
@Table(name="MENU_ITEM")
public class MenuItem implements Serializable {
 …
 private int index;
 …
 }

In this example, the @OrderBy annotation on the Restaurant.menuItems specifies
that the list should be sorted by the MenuItem.index field. This is a minor change,
but it’s a shame that you need to do this given that Hibernate and JDO will auto-
matically maintain the ordering.

 If you are willing to sacrifice portability, then you can use a vendor-specific
extension such as JBoss’s @OrderBy annotation:

@Entity(access=AccessType.FIELD)
public class Restaurant {
 @OneToMany(cascade = CascadeType.ALL, fetch = FetchType.LAZY)
 @IndexColumn(name="MENU_ITEM_INDEX")
 private List<MenuItem> menuItems;
…
}

The @IndexColumn annotation tells JBoss EJB 3 to maintain the index of each Menu-
Item in the MENU_ITEM_INDEX column of the MENU_ITEM table.

 Another feature missing from EJB 3 is the ability to automatically delete a child
entity when it is removed from its parent’s collection. It might sound harsh, but
Hibernate and JDO can be configured to automatically delete such orphans. This

370 CHAPTER 10

Implementing POJOs with EJB 3
is essential for relationships such as PendingOrder-PendingOrderLineItem, where
line items must be deleted when they are no longer associated with the parent.

 To correctly implement these kinds of a relationship, a portable EJB 3 applica-
tion must contain code to explicitly delete orphaned children. For example, the
method PendingOrder.updateQuantities(), which updates the lineItems field,
must call EntityManager.remove() on each line item it removes from the
lineItems fields. This potentially impacts several classes in the domain model.
First, we have to encapsulate the deletion code in a repository such as the
PendingOrderRepository. Second, we must change the PlaceOrderService to pass
the repository to the PendingOrder. Finally, we need to change the PendingOrder
to call the repositories. Lots of little changes—all because EJB 3 lacks a feature
that has been in JDO and Hibernate for quite some time.

 The alternative, of course, is to use a vendor-specific feature. For example,
JBoss EJB 3 supports a nonstandard @Cascade annotation that lets you tell the EJB 3
implementation to delete orphaned children:

public class PendingOrder implements Serializable {
…
 @OneToMany(cascade = { CascadeType.ALL })
 @OrderBy("index")
 @JoinColumn(name = "PENDING_ORDER_ID")
 @org.hibernate.annotations.Cascade(org.hibernate.annotations.
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb➥ CascadeType.DELETE_ORPHAN)
 private List<PendingOrderLineItem> lineItems = new

ArrayList<PendingOrderLineItem>();
…
}

The value of CascadeType.DELETE_ORPHAN specifies that the EJB container should
delete children when they are removed from the collection.

 As you can see, these kinds of limitations force you to make the difficult deci-
sion between writing a portable application that requires extra code and using
vendor-specific extensions. I hope these problems are addressed before the
release of the EJB 3 specification. After all, it’s not as if there is anything new to
invent or discover.

Limitations of fetch joins
EJB 3’s support for eager loading is definitely an improvement over EJB 2, which lacks
a mechanism for configuring eager loading and requires you to use a vendor-specific
mechanism. EJB 3 lets you statically configure eager loading in the annotations
defining the O/R mapping or dynamically by using Hibernate-style fetch joins in

Overview of EJB 3 371
queries. However, while fetch joins are a concise and easy-to-use way to dynamically
control eager loading, they have some limitations.

 As you saw in chapter 6, one important limitation of Hibernate-style fetch joins
is that because they are part of the query language they cannot control eager load-
ing when loading an individual object or traversing a relationship. Also, if differ-
ent use cases need to eagerly load different sets of objects, an application must use
multiple variants of a query, each one with a different set of fetch joins. This can
make it difficult to implement a repository that is shared by different business
logic components because it must provide multiple query methods or a single
query method that has a parameter that indicates which fetch joins to use. Conse-
quently, you will encounter the same issues with optimizing an EJB 3 application as
you will with a Hibernate application.

Limitations of automatic detachment
Detached objects are another important EJB 3 feature. But the lack of a declara-
tive fetch group mechanism in EJB 3 can make it difficult to detach the necessary
objects. In EJB 3, the EJB container automatically detaches all objects that were
loaded by the application. Unlike JDO, an application cannot use fetch groups to
specify which objects to detach. If different business methods need to return dif-
ferent object graphs, an EJB 3 application has two options. One option is to use
multiple queries with different fetch joins, which compounds the problem with
eager loading that we described earlier. Another option is to navigate to each of
the required objects, which is tedious and error-prone and embeds the object
structure in the application’s code. In comparison, a JDO 2.0 application can use
fetch groups to declaratively specify which objects to return.

Dependency injection can only inject JNDI objects into EJBs
A façade, which is typically implemented as a session or message-driven bean, usu-
ally depends on one or more other components, which in turn depend on other
components. For example, the PlaceOrderFacade depends on components such
as the PlaceOrderService and the RestaurantRepository. Ideally, we should be
able to use EJB dependency injection to wire all of these components together.
However, one of its big limitations is that it can only inject JNDI objects into EJBs.
It will not wire together POJOs such as domain services and repositories and inject
their dependencies. Later in this chapter we describe how to solve this problem. It
is disappointing, however, that EJB 3 does not support dependency injection of
POJOs or provide some kind of integration with a lightweight framework con-
tainer such as Spring.

372 CHAPTER 10

Implementing POJOs with EJB 3
Session and message-driven beans must be deployed
Apart from the limitations described earlier, EJB 3 entity beans are fairly easy to
use: develop your POJOs and annotate them. However, session and message-
driven beans are different beasts entirely. Even though they are POJOs, you must
deploy them in the EJB container, which slows down the edit-compile-debug cycle.
Furthermore, unless they have a remote interface you must implement the tests
using Cactus [Cactus] and deploy them in the application server as well, which is
an added source of complexity. In comparison, executing tests in a Spring-based
application is convenient and fast.

Development environment complexity
Another drawback of developing with EJB 3 is that you must deal with the added
complexity of incorporating a full-blown application server in your development
environment even if your application does not use other parts of the J2EE stack
such as JMS. EJB 3 shields you from some of the complexity, but it is still there,
lurking beneath the surface.

 As you can see, even though EJB 3 is definitely much easier to use than EJB 2, it
still has some significant limitations. Let’s now look at how to use EJB 3 to imple-
ment an application. In the next section you will learn how to persist a domain
model with EJB 3. After that we describe the different ways to implement a façade
in an EJB 3 application.

10.2 Implementing a domain model with EJB 3

In this section you will learn how to use EJB 3 to persist a domain model. We use the
domain model for the Place Order use case that was developed in chapter 7 as an
example. Figure 10.2 shows the domain model classes that we will be discussing.

 You will learn how to define the O/R mapping for the domain model entities,
such as PendingOrder and Coupon. We explain how to implement the
EJB3RestaurantRepository, and also briefly describe how to write tests for EJB 3
entity beans. You will see examples of how the limitations we discussed earlier in
section 10.1.2 can impact the design of even a simple domain model.

10.2.1 Mapping the classes to the database

Let’s look at some example classes that show how to configure entities beans and
define their O/R mapping. You will see that some aspects of persisting a POJO
domain model using EJB 3 are straightforward. You just have to annotate the

Implementing a domain model with EJB 3 373
POJOs to configure the entity beans and define their O/R mapping. However, the
limitations we saw earlier make it more difficult than it should be.

Implementing the PendingOrder entity bean
The first class we’ll look at is the PendingOrder class. This class is interesting
because it uses several ORM features. It has simple fields, embedded objects, an
ordered unidirectional one-to-many-relationship, and two many-to-one relation-
ships, including a polymorphic reference. As you learned in chapters 5 and 6,
persisting this class with Hibernate and JDO is very straightforward. So what
about when using EJB 3?

 It turns out that persisting this class with EJB 3 is not as easy. We can easily map
most fields and relationships to the database, but EJB 3 does not make it easy to
persist the line items. The two main challenges are how to preserve the ordering
of the lineItems collection, which is of type List<PendingOrderLineItem>, and
how to delete a line item when it is removed from the lineItems collection. If we

PendingOrder
PendingOrder

LineItem

Restaurant MenuItem

<<interface>>
Coupon

FreeShipping
Coupon

Percentage
Discount
Coupon

<<interface>>
Restaurant
Repository

EJB3Restaurant
Repository

javax.persistence

Entity
Manager

....

Figure 10.2 The EJB 3 versions of the domain model entities and repositories

374 CHAPTER 10

Implementing POJOs with EJB 3
stayed within the EJB 3 standard the PendingOrder class, we would have to write
extra code to maintain an index field in PendingOrderLineItem and to explicitly
delete line items when they are removed from the collection.

 The other option is to use the vendor-specific extensions we saw in
section 10.1.2. We can use the JBoss-specific @OrderColumn extension to tell JBoss to
automatically maintain the index of each line item. We can also use the Cascade-
Type.DELETE_ORPHAN extension to specify that a line item should be automatically
deleted when it is removed from the lineItems collection. Using these annotations
couples the code to the JBoss EJB 3 implementation, but it’s better that writing
extra code. Listing 10.1 shows part of the source code for the PendingOrder class.

@Entity(access = AccessType.FIELD)
@Table(name = "PENDING_ORDER")
public class PendingOrder implements Serializable {

 @Id(generate = GeneratorType.AUTO)
 private int id;

 private int state = PendingOrder.NEW;

 @Column(name="DELIVERY_TIME")
 private Date deliveryTime;

 @ManyToOne
 @JoinColumn(name = "RESTAURANT_ID")
 private Restaurant restaurant;

 @OneToMany(cascade = { CascadeType.ALL })
 @JoinColumn(name = "PENDING_ORDER_ID")
 @org.hibernate.annotations.IndexColumn
bbbbbbbb➥ (name="MENU_ITEM_INDEX")
 @org.hibernate.annotations.Cascade(
bb➥ org.hibernate.annotations.CascadeType.DELETE_ORPHAN)
 private List<PendingOrderLineItem>
 lineItems = new ArrayList<PendingOrderLineItem>();

 @ManyToOne(cascade=CascadeType.PERSIST,
 targetEntity=AbstractCouponImpl.class)
 @JoinColumn(name = "COUPON_ID")
 private Coupon coupon;

 @Embedded({
 @AttributeOverride(name = "street1",
 column = { @Column(name = "DELIVERY_STREET1") }),
 @AttributeOverride(name = "street2",

Listing 10.1 PendingOrder entity bean

B Defines mapping for class

C Configures
primary key field

D Maps deliveryTime field

E Maps restaurant field

F Maps lineItems

G Maps coupon

Maps deliveryAddress,
paymentInformation

H

Implementing a domain model with EJB 3 375
 column = { @Column(name = "DELIVERY_STREET2") }),
 @AttributeOverride(name = "city",
 column = @Column(name = "DELIVERY_CITY")),
 @AttributeOverride(name = "state",
 column = @Column(name = "DELIVERY_STATE")),
 @AttributeOverride(name = "zip",
 column = @Column(name = "DELIVERY_ZIP")) })
 private Address deliveryAddress;

 @Embedded({
 @AttributeOverride(name = "type",
 column = { @Column(name = "PAYMENT_TYPE") }),
 @AttributeOverride(name = "name",
 column = { @Column(name = "PAYMENT_NAME") }),
 @AttributeOverride(name = "number",
 column = @Column(name = "PAYMENT_NUMBER")),
 @AttributeOverride(name = "month",
 column = @Column(name = "PAYMENT_MONTH")),
 @AttributeOverride(name = "year",
 column = @Column(name = "PAYMENT_YEAR")) })
 private PaymentInformation paymentInformation;
…

 public void updateQuantities(int[] quantities) {
 List<MenuItem> menuItems = restaurant.getMenuItems();

 lineItems.clear();

 Iterator it = menuItems.iterator();
 int index = 0;
 for (int i = 0; i < quantities.length; i++) {
 int quantity = quantities[i];
 MenuItem menuItem = (MenuItem) it.next();
 if (quantity > 0) {
 lineItems
 .add(new PendingOrderLineItem(
 quantity, menuItem));
 }

 }

 setState(meetsMinimumOrder() ? PendingOrder.READY_FOR_CHECKOUT
 : PendingOrder.RESTAURANT_SELECTED);
 }
…
}

376 CHAPTER 10

Implementing POJOs with EJB 3
Let’s look at the details:

@Entity annotation specifies that PendingOrder is an entity bean and the access =
AccessType.FIELD member specifies that its fields are mapped

The @Id annotation specifies that the id field stores the primary key and that the
EJB container should pick the most appropriate primary key generation mecha-
nism for the database.

The @Column annotation for the deliveryTime field specifies that it maps to the
DELIVERY_TIME column.

The restaurant field has an @ManyToOne annotation, which specifies that the rela-
tionship is many-to-one, and an @JoinColumn, which specifies that the foreign key
column in the PENDING_ORDER table is called RESTAURANT_ID.

The lineItems field has two standard annotations: an @OneToMany annotation,
which specifies that the relationship is one-to-many, and an @JoinColumn attribute,
which specifies that the foreign key in the PENDING_ORDER_LINE_ITEM table is
called PENDING_ORDER_ID. It also has two JBoss extensions: @IndexColumn, which
automatically maintains the index, and @Cascade, which automatically deletes
orphaned children.

The coupon field has an @ManyToOne annotation that specifies that the field is really
a reference to an AbstractCouponImpl. You’ll learn why in a moment.

The @Embedded and @AttributeOverride annotations for the deliveryAddress and
paymentInformation fields define the O/R mapping for the fields of the embed-
ded objects.

Implementing the Restaurant entity bean
The Restaurant class is the next class we are going to examine. We must solve two
issues in order to persist this class with EJB 3. The first is how to persist Restau-
rant.serviceArea, which is of type Set<String> and is not supported by EJB 3. To
persist this field we must change the serviceArea field to Set<ZipCode> and
define a ZipCode entity, which is a wrapper around a String.

 The second problem we must address is how to preserve the ordering of the
menuItem field, which is a List<MenuItem>. As with the PendingOrder.lineItem
field we have two options. We can either add an index field to the MenuItem class
or we can use a vendor-specific extension. Once again I’m going to use the JBoss
extensions to avoid writing extra code.

 Here is part of the code for the Restaurant class:

B

C

D

E

F

G

H

Implementing a domain model with EJB 3 377
@Entity (access=AccessType.FIELD)
@Table(name="RESTAURANT")
public class Restaurant implements Serializable {
 @Id(generate = GeneratorType.AUTO)
 private int id;

 private String name;

 @OneToMany(cascade = CascadeType.ALL,
 fetch = FetchType.LAZY)
 @JoinColumn(name = "RESTAURANT_ID")
 @org.hibernate.annotations.IndexColumn(name="MENU_ITEM_INDEX")
 private List<MenuItem> menuItems;

 @ManyToMany
 private Set<ZipCode> serviceArea;

 public boolean isInServiceArea(Address
bbbbbbbbbbbbbbbbbbbbbbbbbb➥ address) {
 for (Iterator it = serviceArea.iterator(); it.hasNext();) {
 ZipCode zipCode = (ZipCode) it.next();
 if (zipCode.getZipCode().equals(address.getZip()))
 return true;
 }
 return false;
 }

The menuItems field is a collection of MenuItem objects and is mapped using the
@OneToMany annotation. The serviceField is a set of ZipCode entity beans instead
of a set of strings, and the isInServiceArea() method looks for a ZipCode entity
bean for the specified zipCode. As you can see, this change impacts this class’s
constructor and the isInServiceArea() method. It also affects the classes that
create restaurants.

 We must also define the ZipCode entity bean, which wraps the ZIP code:

@Entity (access=AccessType.FIELD)
public class ZipCode implements Serializable {

 @Id
 public String zipCode;
 ZipCode() {
 }

 public ZipCode(String zipCode) {
 this.zipCode = zipCode;
 }

 public String getZipCode() {

Maps
menuItems

Maps serviceArea

Finds
ZipCode entity

378 CHAPTER 10

Implementing POJOs with EJB 3
 return zipCode;
 }
}

It consists of a single zipCode field, which is the primary key field. Defining this kind
of entity bean to wrap a primitive value is a pretty simple change, but it’s a shame
that it’s necessary. You might be used to doing it when developing with EJB 2, but if
you have been using JDO or Hibernate it’s an annoying change to make.

Implementing the Coupon entity bean
The final set of types we’ll show how to persist is the Coupon class hierarchy, which
consists of the Coupon interface and the concrete subclasses that implement vari-
ous discount strategies. One of the great features of EJB 3 is that, unlike EJB 2, it
supports inheritance. This means that in order to map the Coupon class hierarchy
to the COUPON table, we must simply introduce an abstract superclass—the same
change we made with Hibernate and JDO. This class implements the Coupon
interface and is extended by the concrete classes such as FreeShippingCoupon
and PercentageDiscountCoupon:

@Entity(access = AccessType.FIELD)
@Table(name = "COUPON")
@Inheritance(strategy = InheritanceType.SINGLE_TABLE,
 discriminatorType = DiscriminatorType.STRING)
@DiscriminatorColumn(name = "COUPON_TYPE")
public abstract class AbstractCouponImpl implements Coupon {

 @Id(generate = GeneratorType.AUTO)
 private int id = -1;

 private String code;

 protected AbstractCouponImpl() {

 }

 protected AbstractCouponImpl(String code) {
 this.code = code;
 }

 public String getCode() {
 BBreturn code;
 }

 public int getId() {
 bbreturn id;
 }
}

Implementing a domain model with EJB 3 379
The @Inheritance annotation defines the inheritance strategy for the Coupon class
hierarchy and specifies that the discriminator column, which identifies the type of
the instance, stores strings. The @DiscriminatorColumn annotation specifies that
the COUPON_TYPE column stores the type of the coupon.

 Here is the FreeShippingCoupon class, which now extends AbstractCouponImpl
rather than implementing Coupon:

@Entity (access=AccessType.FIELD)
@Inheritance(strategy=InheritanceType.SINGLE_TABLE,
 discriminatorValue="FREE_SHIP")
public class FreeShippingCoupon extends Coupon {

 private double minimum;

 public FreeShippingCoupon() {
 }

 public FreeShippingCoupon(String code, double minimum) {
 super(code);
 this.minimum = minimum;
 }

}

The discriminatorValue member of the @Inheritance annotation specifies that
the value of "FREE_SHIP" in the COUPON_TYPE column indicates that the row repre-
sents a FreeShippingCoupon. The other subclasses of Coupon are annotated in a
similar way.

 Fields such as PendingOrder.coupon, which reference a Coupon, must be anno-
tated with an @ManyToOne annotation that specifies the referenced class as
AbstractCouponImpl:

Class PendingOrder {
…
 @ManyToOne(cascade = CascadeType.PERSIST,
 targetEntity = AbstractCouponImpl.class)
 @JoinColumn(name = "coupon_id")
 private Coupon coupon;
…
}

The targetEntity member specifies that the coupon field is really a reference to
an AbstractCouponImpl.

 As you can see, entity beans are POJOs, but the limitations of the EJB 3 O/R
mapping requires some changes to the domain model and/or the use of vendor-
specific extensions. Table 10.1 summarizes these issues.

380 CHAPTER 10

Implementing POJOs with EJB 3
Each modification is small, but lots of little changes like these accumulate and
introduce unnecessary complexity into the domain model. We must also decide
between using vendor extensions and making even more changes. Using vendor
extensions is appealing because it can reduce the amount of code that must be
written. The downside of using them is that the code is no longer portable between
EJB 3 implementations. This can sometimes be a difficult decision to make.

 As well as defining the O/R mapping for a domain model, we must develop the
repositories, which define methods for creating, finding, and deleting persistent
objects. The next section shows you how.

10.2.2 Implementing repositories

In an EJB 3 application, the repositories use the EntityManager and Query inter-
faces to access the database. For example, listing 10.2 shows the EJB 3 implementa-
tion of the RestaurantRepository, which find restaurants using these interfaces. It
has a findRestaurant() method, which loads a single restaurant, and a find-
AvailableRestaurants() method, which finds all restaurants that serve the speci-
fied delivery address and time.

public class EJB3RestaurantRepository implements
 RestaurantRepository {

 private EntityManager entityManager;

 public EJB3RestaurantRepository(
 EntityManager entityManager) {
 bbthis.entityManager = entityManager;

 }

 public Restaurant findRestaurant(

Table 10.1 Summary of the issues when using EJB 3 to persist the Food to Go domain model

Class Issue

PendingOrder.lineItems
Restaurant.menuItems

Either:
Add an index column to the element class.
Use a JBoss-specific annotation.

Restaurant.serviceArea Replace the Set<String> with a Set<ZipCode>.

Coupon class hierarchy Introduce an AbstractCouponImpl superclass.

Listing 10.2 EJB3RestaurantRepository

Saves EntityManager

Implementing a domain model with EJB 3 381
 String restaurantId) {
 bbreturn entityManager.find(Restaurant.class,
 bbbbbbbbbbbbbbbbbbbbbbbbbbbnew Integer(restaurantId));
 }

 public List findAvailableRestaurants(
 Address deliveryAddress, Date deliveryTime) {
 bbQuery query = entityManager
 bb.createNamedQuery("Restaurant.findAvailableRestaurants");
 bbCalendar c = Calendar.getInstance();
 bbc.setTime(deliveryTime);
 bbint dayOfWeek = c.get(Calendar.DAY_OF_WEEK);
 bbint hour = c.get(Calendar.HOUR_OF_DAY);
 bbint minute = c.get(Calendar.MINUTE);
 bbString zipCode = deliveryAddress.getZip();

 bbquery.setParameter("dayOfWeek", new Integer(
 bbdayOfWeek));
 bbquery.setParameter("hour", new Integer(hour));
 bbquery.setParameter("minute", new Integer(
 bbminute));
 bbquery.setParameter("zipCode", new Integer(
 bbzipCode));
 bbreturn query.getResultList();

 }

 public boolean isRestaurantAvailable(
 Address deliveryAddress, Date deliveryDate) {
 bbreturn !findAvailableRestaurants(
 bbdeliveryAddress, deliveryDate)
 bb.isEmpty();
 }

}

In listing 10.2, the constructor takes the EntityManager as a parameter and stores
it in a field. The findRestaurant() method then calls EntityManager.find() to
retrieve the specified restaurant. Finally, the findAvailableRestaurants() method
uses the EntityManager to execute a named query that finds the available restaurants.

 Note that as of the time of this writing, Spring does not yet support EJB 3 and so
this repository uses the EJB 3 APIs directly rather than using a Spring ORM template
class. It also throws EJB exceptions instead of Spring data access exceptions. Once
Spring has an EJB 3 ORM template class, we will be able to simplify the code, which
will make it a little easier to test, and use Spring’s exception mapping mechanism,
which will enable the application to handle data access exceptions uniformly.

Finds the Restaurant

Executes named query

382 CHAPTER 10

Implementing POJOs with EJB 3
 The named EJB QL query that is executed by the EJB3RestaurantRepository is
defined using the @NamedQuery annotation of the Restaurant entity bean:

@Entity(access = AccessType.FIELD)
@NamedQuery(name = "Restaurant.findAvailableRestaurants",
 queryString = "SELECT OBJECT(restaurant) "
 + "FROM Restaurant as restaurant, "
 + " IN(restaurant.serviceArea) zip, "
 + " IN(restaurant.timeRanges) tr "
 + "WHERE zip.zipCode = :zipCode AND tr.dayOfWeek = :dayOfWeek "
 + " AND ((tr.openHour < :hour "
 + " OR (tr.openHour = :hour AND tr.openMinute <= :minute))"
 + " AND (tr.closeHour > :hour "
 + " OR (tr.closeHour = :hour AND tr.closeMinute > :minute)
 + "))")
@Table(name = "FTGO_RESTAURANT")
public class Restaurant implements Serializable {
…
}

This query is pretty similar to the HQL and JDOQL queries you saw earlier in chap-
ters 5 and 6. It finds those restaurants whose serviceArea contains a ZipCode for
the specified for ZIP code and whose timeRanges field contains a TimeRange for
the specified day, hour, and minute. It is interesting to see that the long queries
defined in using the @NamedQuery annotation have the same readability problems
as queries defined in Java code. They must be split up into multiple strings that
are concatenated together. In comparison, it’s much easier to write a long query
in an XML document.

 Next let’s consider the issue of testing entity beans.

10.2.3 Testing the persistent EJB domain model

Naturally, a discussion of EJB 3 persistence would not be complete without a men-
tion of testing. Testing EJB 2 entity beans was quite difficult because they had to be
deployed in the EJB container. What’s worse, the tests also needed to be deployed
in the application server so that they could access the entity beans using their
local interface. As well as making testing more complicated, the deployment step
slowed down the edit-compile-debug cycle. In comparison, testing an EJB 3
domain model is straightforward because EJB 3 entity beans can run outside the
container. We can write and execute persistence tests for persistent objects and
repositories in the same way that did in a JDO or Hibernate application. They are
regular JUnit-based tests that are easily run from within the IDE.

 Listing 10.3 shows an example of such a test. This test creates a PendingOrder
entity bean and updates its delivery information. The test class has a setup()

Implementing a domain model with EJB 3 383
method that creates the JBoss/Hibernate implementation of an EntityManager-
Factory and a tearDown() method that closes it. Like the JDO and Hibernate tests
you have seen earlier, this test uses a doInTransaction() method to execute code
within a transaction. This method opens an EntityManager, begins a transaction,
executes the callback, commits the transaction, and closes the EntityManager.

public class EJB3PendingOrderPersistenceTests extends
 TestCase {

 private EntityManager em;
 private EntityTransaction transaction;
 private EntityManagerFactory emf;
 private String poId;

 protected void setUp() throws Exception {
 bbsuper.setUp();
 bbProperties props = new Properties();

 bbprops.setProperty(
 Persistence.PERSISTENCE_PROVIDER,
 HibernatePersistence.class.getName());

 emf = Persistence
 .createEntityManagerFactory(props);
 }

 protected void tearDown() throws Exception {
 bbsuper.tearDown();
 bbif (emf != null)
 emf.close();
 }

 protected void doWithTransaction(TxnCallback cb)
 throws Throwable {

 bbem = emf
 .createEntityManager(PersistenceContextType.EXTENDED);

 transaction = em.getTransaction();
 try {
 transaction.begin();

 cb.execute();

 transaction.commit();
 } finally {
 if (transaction != null
 && transaction.isActive())

Listing 10.3 EJB3PendingOrderPersistenceTests

B Specifies persistence provider

C Creates EntityManagerFactory

D Closes EntityManagerFactory

E Creates EntityManager

F Begins
transaction

G Executes
callback

H Commits or rolls back
the transaction

384 CHAPTER 10

Implementing POJOs with EJB 3
 transaction.rollback();

 if (em != null)
 em.close();
 }

 }

 public void test() throws Throwable {

 bbbdoWithTransaction(new TxnCallback() {

 bbbpublic void execute() throws Exception {

 bbbPendingOrder po = new PendingOrder();
 bbbem.persist(po);

 bbbpoId = po.getId();
 bbb}
 bbb});

 doWithTransaction(new TxnCallback() {

 public void execute() throws Exception {

 RestaurantRepository rr = new EJB3RestaurantRepository(em);
 Class<PendingOrder> type = PendingOrder.class;
 PendingOrder po = em.find(type, poId);
 assertEquals(
 PlaceOrderStatusCodes.OK,
 po.updateDeliveryInfo(
 rr,
 RestaurantTestData
 .getADDRESS1(),
 RestaurantTestData

bbbbbbbbbbbbbbbbbbbb.makeGoodDeliveryTime(),
bbbbbbbbbbfalse));

....}

..})

..}

}

I Closes
the EntityManager

J Creates and persists
PendingOrder

Updates PendingOrder's
delivery info

1)

Implementing a façade with EJB 3 385
Let’s look at the details:

The setUp() method creates a Properties object that specifies the EJB 3 persis-
tence provider.

It creates the EntityManagerFactory.

The teardown() method closes the EntityManagerFactory.

The doWithTransaction() method that executes a callback within a transaction
first creates an EntityManager.

It then begins a transaction.

The method then executes the callback.

If the callback returns, then doWithTransaction() commits the transaction. The
finally clause roll backs the transaction if it has not been committed.

The doWithTransaction() method closes the EntityManager.

The test first creates and persists a PendingOrder.

It then loads the PendingOrder and updates its delivery information.

Once we have persisted the domain model, the next step in the process of imple-
menting the business logic is to encapsulate the domain model with a façade.
Let’s see how to do this in an EJB 3 application.

10.3 Implementing a façade with EJB 3

As we saw in chapter 7, a façade handles requests from the presentation tier by call-
ing the domain model and is responsible for managing transactions. It also
detaches the objects that are returned to the presentation tier. One way to imple-
ment a façade with EJB 3 is to use a POJO façade and Spring transaction manage-
ment. I’m not going to describe how to do this because as of the time of this
writing Spring doesn’t support EJB 3. You would have to write your own intercep-
tors to manage the EntityManager and control transactions. However, I expect that
by the time you are reading this that the Spring framework will have full support
for EJB 3 and you will be able to configure the Spring TransactionInterceptor
with a PlatformTransactionManager that uses the EJB 3 EntityTransaction inter-
face to manage transactions.

 The other way to implement a façade using EJB 3 is to use a session bean. EJB 3
session beans are certainly a heavyweight approach because they must still be
deployed in the EJB container. However, they are certainly worth considering
because they are significantly easier to develop than EJB 2 session beans. As you

B

C

D

E

F

G

H

I

J

1)

386 CHAPTER 10

Implementing POJOs with EJB 3
saw earlier in section 10.1, EJB 3 session beans are POJOs instead of classes that
implement EJB interfaces. They use dependency injection to obtain their depen-
dencies instead of JNDI. You configure them using simple annotations rather than
elaborate deployment descriptors. Moreover, they use transactions, security, and
remoting provided by the EJB container, which is extremely convenient.

 We use the same techniques that we used in chapter 7 to design a POJO façade
to develop an EJB 3 session bean. First, we analyze the UI design to determine the
requests that the session bean must handle and the data that it exchanges with the
presentation tier. Next, we implement the session bean’s methods by calling the
domain model classes. Finally, we implement a result factory that detaches the
objects required by the presentation tier. The only thing that is different is that
the EJB container rather than the Spring framework manages transactions.

 We begin this section by describing how to turn the POJO façade such as the
one we developed in chapter 7 into an EJB 3 stateless session bean. After that we’ll
discuss how a façade goes about detaching objects.

10.3.1 Turning a POJO façade into a session bean

Turning a POJO façade such as the PlaceOrderFacade we developed chapter 7 into
an EJB 3 session bean is pretty simple. No code changes are required other than
the addition of a public default constructor for use by the EJB container. Apart
from that one small change you just have to annotate the façade’s interface and
implementation class. The interface is annotated with an @Local annotation if you
want a local interface or @Remote annotation if you want a remote interface:

@Local
public interface PlaceOrderFacade {
…
}

The implementation class is annotated with the @Stateless annotation and has a
default constructor:

@Stateless
public class PlaceOrderFacadeImpl
 implements PlaceOrderFacade {

 public PlaceOrderFacadeImpl() {
 }
…
}

You can then deploy the bean in the EJB container and all calls to the façade will be
transactional. You can also use the EJB container’s security mechanism, which

Implementing a façade with EJB 3 387
provides role-based declarative security. In addition, if the session bean has a remote
interface, it can be invoked remotely and participate in distributed transactions.

 One drawback, however, of using EJBs is that they are more difficult to test
than Spring beans because they must be deployed in the EJB container. For exam-
ple, in order to test an EJB through its local interface you would have to imple-
ment the tests using Cactus [Cactus] and deploy them in the application server as
well. In addition, deployment is, as we’ve mentioned earlier, an extra step that can
slow down the edit-compile-debug cycle. In comparison, you don’t have jump
through these kinds of hoops to test Spring beans.

10.3.2 Detaching objects

In addition to managing transactions, a façade is responsible for detaching persis-
tent objects so that they can be used by the presentation tier. EJB 3, like Hibernate,
automatically detaches all objects that were loaded during the transaction, and so
the façade must simply ensure that all of the objects required by the presentation
tier are loaded. Sometimes, the domain model services and repositories called by
the façade will load the required objects. However, because of lazy loading those
domain model classes often return an incomplete object graph and so a façade
must sometimes force objects to be loaded.

 A Hibernate application can force an object or collection to be loaded by call-
ing Hibernate.initialize(). However, the EJB 3 EntityManager does not define
the equivalent of Hibernate.initialize(), which means the application must
traverse the object graph and touch the required objects and collections. As with
the POJO façade we saw in chapter 7, we can encapsulate this logic inside a result
factory class that loads the required objects and creates the DTO that is returned
by the façade.

 For example, PlaceOrderFacade can use the implementation of the Place-
OrderFacadeResultFactory interface shown in listing 10.4 to do this. EJB3Place-
OrderFacadeResultFactory ensures that the PendingOrder’s line items and restau-
rant are loaded before creating the PlaceOrderFacadeResult.

public class EJB3PlaceOrderFacadeResultFactory
 implements PlaceOrderFacadeResultFactory {

 public EJB3PlaceOrderFacadeResultFactory() {

 }

Listing 10.4 EJB3PlaceOrderFacadeResultFactory

388 CHAPTER 10

Implementing POJOs with EJB 3
 public PlaceOrderFacadeResult make(int statusCode,
 PendingOrder pendingOrder, List restaurants) {
 bbinitializePendingOrder(pendingOrder);
 bbreturn new PlaceOrderFacadeResult(statusCode,
 bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbpendingOrder, restaurants);
 }

 public PlaceOrderFacadeResult make(int statusCode,
 PendingOrder pendingOrder) {
 bbinitializePendingOrder(pendingOrder);
 bbreturn new PlaceOrderFacadeResult(statusCode,
 bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbpendingOrder);
 }

 private void initializePendingOrder(
 PendingOrder pendingOrder) {
 bbRestaurant restaurant = pendingOrder
 bbbbbbbb.getRestaurant();
 bbif (restaurant != null) {
 bbMenuItem menuItem = restaurant
 bb.getMenuItems().get(0);
 bbmenuItem.getName();
 bb}
 bbList<PendingOrderLineItem> lineItems = pendingOrder
 bb.getLineItems();
 bbif (lineItems != null && !lineItems.isEmpty()) {
 bblineItems.get(0);
 bb}
 }

}

The make() methods call initializePendingOrder(), which touches the pending
order’s line items and the restaurant’s menu items to ensure that they are loaded.
It does not need to touch each line item’s menu item because many-to-one rela-
tionships are eagerly loaded by default. As with the Hibernate version, this code
contains potentially error-prone conditional logic to handle null references and
empty collections.

 A result factory is just one of the several components that a façade typically
needs to fulfill its responsibilities. Let’s now look at how to assemble the façade
and those components.

Assembling the components 389
10.4 Assembling the components

A façade uses several components, including the result factory, the domain ser-
vices, and repositories. These components can in turn reference other compo-
nents as well as infrastructure objects such as the EntityManager. For example,
the PlaceOrderFacade directly and indirectly requires the components shown in
figure 10.3.

 The PlaceOrderFacade requires the PlaceOrderService, RestaurantReposi-
tory, and the PlaceOrderResultFactory. The PlaceOrderService requires reposi-
tories such as the PendingOrderRepository and the RestaurantRepository. The
repositories must be configured with the EntityManager.

 At runtime, the application must instantiate these components and wire them
together. So far, the examples in this book do this using a Spring bean factory.
The bean factory uses dependency injection to wire the components together.
Each component is passed the components that it needs as either constructor
arguments or setter method arguments. Dependency injection is valuable because
it eliminates code that looks up dependencies and thus reduces the coupling
between components.

PlaceOrder
Façade

PlaceOrder
Service

Restaurant
Repository

PendingOrder
Repository

PlaceOrder
ResultFactory

EntityManager Figure 10.3
The PlaceOrderFacade and its dependencies

390 CHAPTER 10

Implementing POJOs with EJB 3
In an EJB 3 application, there are three ways to use dependency injection. One
option is to use EJB 3 dependency injection to wire the components together. The
second is to integrate the Spring and EJB dependency injection mechanisms. The
third is to only use Spring dependency injection. Let’s look at how to use each of
these approaches.

10.4.1 Using EJB dependency injection

One of the exciting new features of EJB 3 is dependency injection, which is an
easy-to-use mechanism that enables a session or message-driven bean to acquire
references to other EJBs and resources without explicit coding. It uses annotations
on fields and setters that specify the objects to inject. When the container instanti-
ates a session or message-driven bean, it will initialize the fields and call the setters
with the specified objects. However, as you learned in section 10.1.2, a significant
limitation of EJB 3 is that the dependencies must be looked up via JNDI and can
only be injected into session and message-driven EJBs.

Application components must be EJBs
To use EJB 3 dependency injection to wire together a façade and its components,
the components must be available through JNDI lookup. Moreover, if those com-
ponents use dependency injection, then they must also be EJBs. The simplest
approach is to implement the façade’s components as stateless session beans. For
example, to configure the PlaceOrderFacade using EJB dependency injection, all
of the classes shown earlier in figure 10.3 must be implemented as session beans.

 Fortunately, it is easy to turn POJOs such as domain services and repositories
into session beans. As you saw earlier, you just need to annotate the interface with
@Local and the implementation class with @Stateless. However, for this to be
practical the overhead of one session bean calling another via a local interface
must be low. In addition, the development environment and the EJB container
must be able to handle the increased number of EJBs without significantly increas-
ing the deployment time.

 Let’s now look at the annotations we must use to configure the PlaceOrder-
Facade and its components.

Annotating a POJO façade
To initialize a POJO façade using dependency injection, we must annotate each
field that references an EJB with an @EJB annotation in order to tell the EJB con-
tainer to inject an EJB. Here is an excerpt from the PlaceOrderFacade that shows
how to do this:

Assembling the components 391
@Stateless
public class PlaceOrderFacadeImpl
 implements PlaceOrderFacade {
 @EJB
 private RestaurantRepository restaurantRepository;

 @EJB
 private PlaceOrderFacadeResultFactory resultFactory;

 @EJB
 private PlaceOrderService service;

 public PlaceOrderFacadeImpl() {
 }

 public PlaceOrderFacadeImpl(
 RestaurantRepository restaurantRepository,
 PlaceOrderService service,
 PlaceOrderFacadeResultFactory resultFactory) {
 this.restaurantRepository = restaurantRepository;
 this.service = service;
 this.resultFactory = resultFactory;
 }
…

The restaurantRepository, resultFactory, and service fields have an @EJB
annotation that tells the EJB container to initialize the field with the referenced
session bean. Note that even though the EJB container initializes the fields using
dependency injection, the bean class must still have a constructor for use by the mock
object tests, which cannot access the private fields. As you can see, PlaceOrder-
FacadeImpl has a constructor that takes the RestaurantRepository, PlaceOrder-
ResultFactory, and PlaceOrderService as parameters and initializes the fields.

Annotating the domain service
The PlaceOrderService, which is the domain service called by the PlaceOrder-
Facade, is configured as a session bean using the @Local and @Stateless annota-
tions. Here is the bean class:

@Stateless
public class PlaceOrderServiceImpl implements
 PlaceOrderService {

 @EJB
 private PendingOrderRepository pendingOrderRepository;

 @EJB
 private RestaurantRepository restaurantRepository;

 public PlaceOrderServiceImpl() {

392 CHAPTER 10

Implementing POJOs with EJB 3
 }

 public PlaceOrderServiceImpl(
 PendingOrderRepository pendingOrderRepository,
 RestaurantRepository restaurantRepository) {
 bbthis.pendingOrderRepository = pendingOrderRepository;
 bbthis.restaurantRepository = restaurantRepository;
 }

The restaurantRepository and pendingOrderRepository fields have an @EJB anno-
tation that tells the EJB container to initialize them. Like the PlaceOrderFacade, the
PlaceOrderService has two constructors: a default constructor for the EJB con-
tainer to use and another for the mock object tests.

Annotating the repositories
The repositories are also configured as stateless session beans. They are injected
with the EntityManager. Here is the bean class for the PendingOrderRepository:

@Stateless
public class EJB3PendingOrderRepository implements
 PendingOrderRepository {

 @PersistenceContext
 private EntityManager entityManager;

 public EJB3PendingOrderRepository() {
 }

 public EJB3PendingOrderRepository(EntityManager entityManager) {
 bbthis.entityManager = entityManager;
 }

The entityManager field has an @PersistenceContext annotation that tells the EJB
container to initialize the field with a reference to the EntityManager. The other
repositories are annotated in a similar fashion. Once we have made these
changes, the EJB container will wire together the PlaceOrderFacade and its com-
ponents and configure the repositories with the EntityManager.

 EJB 3 dependency injection is certainly a simple yet effective mechanism for
wiring together components that are implemented as EJBs. Unfortunately, it
might not make sense or even be possible to implement all of the components as
session beans. Let’s look at how to inject POJOs into session beans.

10.4.2 Integrating Spring and EJB dependency injection

The Spring framework has a very powerful dependency injection mechanism.
Spring beans are arbitrary POJOs and can be injected with other Spring beans as

Assembling the components 393
well as arbitrary values such as strings and integers. There are also other useful
features, such as its support for AOP. In comparison, EJB 3 dependency injection is
a convenient way for EJBs to access JNDI objects but lacks many of those features
provided by Spring dependency injection. Ideally, we should be able to use the
two dependency mechanisms together and leverage each of their strengths.

 The good news is that there is a way to integrate Spring and EJB 3 dependency
injection. We can use Spring’s bean factory mechanism to create and wire
together POJOs and use EJB 3 dependency injection to inject the POJOs into EJBs.
Not only does this let EJB 3 applications take advantage of Spring’s dependency
injection, but it can also make it easier to incorporate existing Spring code.

 We need to do three things to integrate Spring and EJB dependency injection:

1 Expose Spring beans via JNDI when the application is initialized.

2 Annotate the session bean class to bind a JNDI name to the EntityManager
and annotate its fields to inject the POJOs using JNDI.

3 Configure a Spring JndiObjectFactoryBean to look up the EntityManager
via JNDI so that it can be injected into the repositories.

Let’s see how to do approach this task using the PlaceOrderFacade EJB as an exam-
ple. You will learn how to use Spring to create POJOs such as PlaceOrderService
and RestaurantRepository and to then inject them into the PlaceOrderFacade
EJB. Note that this section describes some aspects of JNDI that you might be unfa-
miliar with; I had certainly never used these particular JNDI APIs until I tried to do
this integration. Please bear with me as I describe all the different pieces.

Exposing Spring beans via JNDI
As you saw in section 10.1, EJB dependency injection is based on JNDI; therefore,
if you want to inject a Spring bean into an EJB it must be accessible via JNDI. We
can do this by binding a name in the JNDI tree to a JNDI Reference. A JNDI Refer-
ence is an object that tells the JNDI implementation how to find an object that
exists outside of JNDI. As figure 10.4 shows, in this particular case the Reference
acts as a bridge between the EJB container and the Spring bean factory.

 To expose a Spring bean via JNDI, we would create a Reference that contains
the name and type of a Spring bean and the name of a JNDI ObjectFactory class
that calls Spring to get the bean. When the EJB container does a JNDI lookup, it
will find the Reference and call the ObjectFactory to create the object. The
ObjectFactory will get the Spring bean by calling BeanFactory.getBean().

394 CHAPTER 10

Implementing POJOs with EJB 3
Here is an example of some code that stores a reference to the PlaceOrderService
Spring bean in the JNDI tree:

Context ctx = new InitialContext();
Reference reference = new Reference(
 PlaceOrderService.class.getName(),
 new StringRefAddr("beanName", "PlaceOrderService"),
 SpringObjectFactory.class.getName(),
 null);
ctx.bind("PlaceOrderService", reference);

This code fragment instantiates a Reference that contains the name of the Place-
OrderService class, the name of the Spring bean, and the fully qualified class
name of the SpringObjectFactory, which is a JNDI object factory that calls Bean-
Factory.getBean(). It then binds the name “PlaceOrderService” to the reference
in the JNDI tree.

 When the JNDI implementation encounters this reference during a lookup, it
calls SpringObjectFactory to create the object. This class defines a getObject-
Instance() method that creates a Spring bean by calling a Spring bean factory:

public class SpringObjectFactory implements
 ObjectFactory {

 public Object getObjectInstance(Object reference,
 Name name, Context nameCtx,
 Hashtable<?, ?> environment)

Spring Bean Factory

EJB Container

EJB

POJO

POJO POJO

JNDI Reference

References

Creates

Figure 10.4 Using a JNDI Reference to a Spring bean

Assembling the components 395
 throws Exception {
 String beanName = (String) ((Reference) reference)
 .get(0).getContent();
 return TheBeanFactory.getBean(beanName,
 Object.class);
 }

}

The getObjectInstance() method is called by the JNDI implementation when the
EJB container looks up the bean. It gets the bean name from the Reference
parameter and calls the Spring bean factory.

Binding the references to the Spring beans
One tricky implementation issue is how and when to bind the references to the
Spring beans into the JNDI tree. I’ve rarely had to explicitly call JNDI to bind
names to objects because it has always been done automatically by the EJB con-
tainer when deploying an EJB or by the application server when creating objects
such as a JDBC DataSource. However, to expose Spring beans via JNDI you must
write some initialization code that binds the references.

 I originally thought that this could be done by a startup servlet, which is an
easy-to-use and portable way to execute initialization code. However, it turns out
that some application servers such as JBoss require the JNDI names referenced by
an EJB to be bound before the EJB is deployed. This is because when the EJB con-
tainer deploys an EJB it looks up the JNDI names referenced by the dependency
injection annotations. The deployment will fail if the name is not found. Because
servlets are usually loaded after the EJBs, you cannot use one to bind the JNDI ref-
erences. Instead, you must use an application server-specific mechanism.

 For example, JBoss Application Server 4.0 has a feature called a service POJO
that can be used to execute initialization code. We won’t go into the details of how
a service POJO works except to say that it can have a create() method that is
called by the application server when it is deployed and a destroy() method that
is called when the service POJO is undeployed. You can write a service POJO that
has a create() method that binds the references to the Spring beans and a
destroy() method that unbinds the references. Here is an example of a service
POJO class that does just that:

@Service
@Local(SpringBeanReferenceInitializerLocal.class)
public class SpringBeanReferenceInitializer implements
 SpringBeanReferenceInitializerLocal,
 SpringBeanReferenceInitializerManagement {

396 CHAPTER 10

Implementing POJOs with EJB 3
 public void create() throws Exception {
 bbInitialContext ctx = new InitialContext();
 bbReference reference = new Reference(
 bbbbPlaceOrderService.class.getName(),
 bbbbnew StringRefAddr("beanName",
 bbbb"PlaceOrderService"),
 bbbbSpringObjectFactory.class.getName(),
 bbbbnull);
 bbctx.bind("MyTestSpringBean", reference);
 }

 public void destroy() throws Exception {
 bbInitialContext ctx = new InitialContext();
 bbctx.unbind("MyTestSpringBean");
 }

}

In this listing, the @Service annotation indicates that SpringBeanReferenceIni-
tializer is a service POJO. The create() method then creates a Reference and
binds a name to it, and the destroy() method unbinds the reference.

 As you can see, initializing the JNDI references when using JBoss requires the
definition of a simple POJO service. The only other thing we must do is ensure
that the SpringBeanReferenceInitializer is created before any of the EJBs that
reference the Spring beans. Let’s look at how to do this.

Annotating the session bean class
The next step is to annotate the session beans to tell the EJB container to inject
the Spring beans. There are three different annotations that we must use:

■ @Resource is used on each field that references a POJO. It tells the EJB con-
tainer to inject the object bound to the specified JNDI name.

■ @PersistenceContexts is used on the bean class to bind a JNDI name to the
EntityManager so that it can be looked up the Spring JndiObjectFactory-
Bean, as we explain a bit later, and injected into the POJO repositories.

■ @Depends is a JBoss-specific annotation that is used on the bean class to
ensure that the SpringBeanReferenceInitializer binds the JNDI references
before the EJB is deployed.

Here is an example of a stateless bean class that uses these annotations:

@Stateless
@Depends("jboss.j2ee:service=EJB3,type=service,
bb➥ name=net.chrisrichardson.foodToGo.ejb3.service.
bbbbbb➥ SpringBeanReferenceInitializerLocal")

Assembling the components 397
@PersistenceContexts({
b➥ @PersistenceContext(name = "EntityManager") })
public class PlaceOrderFacadeUsingIntegratedDependencyInjectImpl
 implements
 PlaceOrderFacadeUsingIntegratedDependencyInject {

 @Resource(name = "RestaurantRepository")
 private RestaurantRepository restaurantRepository;

 @Resource(name = "PlaceOrderFacadeResultFactory")
 private PlaceOrderFacadeResultFactory resultFactory;

 @Resource(name = "PlaceOrderService")
 private PlaceOrderService service;
…
}

When the EJB container instantiates the PlaceOrderFacadeUsingIntegratedDepen-
dencyInjectImpl class, it looks up the JNDI names specified by the @Resource
annotations and retrieves the POJOs. Because those JNDI names are bound to ref-
erences, the JNDI implementation will end up calling the Spring bean factory,
which will create those POJOs and their dependencies. When the Spring bean fac-
tory creates the repositories, it will do a JNDI lookup to retrieve the EntityManager
that is injected into the repositories. Let’s take a look.

Injecting the EntityManager into the repositories
The Spring bean factory must inject the EntityManager into the repositories. The
@PersistenceContext annotation on the session bean class binds a JNDI name to
the EntityManager, and so we just need to use the Spring JndiObjectFactoryBean,
which is a Spring FactoryBean that looks up a JNDI object. One complication,
however, is that the EntityManager is not bound when the Spring bean factory is
called. This means that we must configure the JndiObjectFactoryBean to delay
looking up EntityManager until the first time the application calls it. This is
accomplished by using the JndiObjectFactoryBean’s lookupOnStartup and proxy-
Interface properties. Here are the bean definitions for the JndiObjectFactory-
Bean and an example repository:

<beans>
…
<bean id="EntityManager"
 class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName">
 <value>java:comp.ejb3/env/
bbbbbbbb➥ EntityManager</value>
 </property>
 <property name="lookupOnStartup">

Specifies JNDI name to look up

Delays lookup until first access

398 CHAPTER 10

Implementing POJOs with EJB 3
 <value>false</value>
 </property>
 <property name="proxyInterface">
 <value>javax.persistence.
bbbbbbbbb➥ EntityManager</value>
 </property>
</bean>

<bean id="PendingOrderRepositoryImpl"
class="net.chrisrichardson.foodToGo.ejb3.domain.

bbbbb➥ EJB3PendingOrderRepository">
 <constructor-arg ref="EntityManager"/>
</bean>
…
</beans>

In this listing, the JndiObjectFactoryBean’s jndiName specifies the JNDI name of
the EntityManager. The “java:comp.ejb3/env” portion of the name is JBoss-specific,
and the “EntityManager” portion corresponds to the name specified by the @Per-
sistenceContext annotation on the session bean class.

 Next, the lookupOnStartup property tells the JndiObjectFactoryBean to delay
performing the JNDI lookup until the EntityManager is first accessed. Then the
proxyInterface property specifies the type of the object that will be retrieved.
Finally, the <constructor-arg> element specifies that the EntityManager retrieved
from JNDI should be passed as a constructor parameter to the EJB3Pending-
OrderRepository.

 That’s it! We have gotten through all of gory details of using JDNI and JBoss
service POJOs. Once you have annotated the session beans, written the service
POJO to bind the references, and configured the Spring beans, the EJB and
Spring dependency injections can work side by side. Spring takes care of wiring
together arbitrary POJOs with their dependencies, and the EJB container injects
the POJOs into the EJBs. The main drawback of this approach is that quite a bit of
setup is involved, which is typical of EJBs. Instead of a simple lightweight mecha-
nism that Spring provides, we have to resort to the heavyweight JNDI mechanism.
It would be much better if EJB 3 was directly integrated with Spring.

10.4.3 Using Spring dependency injection

The third way to wire together the façade and its dependencies is for the session
bean to explicitly call the Spring bean factory, as shown in figure 10.5. With this
approach, the façade is the only stateless session bean. The other components,
such as the domain services and repositories, are POJOs.

Specifies object’s type

Passes EntityManager
to constructor

Assembling the components 399
The façade EJB calls a Spring bean factory, which instantiates the components that
it requires and wires them together. Listing 10.5 shows how the PlaceOrderFacade
EJB can use Spring to construct its dependencies.

@Stateless
public class PlaceOrderFacadeImplUsingSpring
 implements PlaceOrderFacade {
 private RestaurantRepository restaurantRepository;

 private PlaceOrderFacadeResultFactory resultFactory;

 private PlaceOrderService service;

 public PlaceOrderFacadeImplUsingSpring() {
 }

 @PostConstruct
 public void createComponents(
 EntityManager entityManager) {
 this.restaurantRepository =
 (RestaurantRepository) TheBeanFactory
 .getBean("RestaurantRepository",
 RestaurantRepository.class);
 this.resultFactory =
 (PlaceOrderFacadeResultFactory) TheBeanFactory
 .getBean(
 "PlaceOrderFacadeResultFactory",

Listing 10.5 PlaceOrderFacadeImplUsingSpring

Spring Bean Factory

EJB Container

EJB

Calls

POJO

POJO POJO
Figure 10.5
Calling the Spring bean
factory directly from an EJB

400 CHAPTER 10

Implementing POJOs with EJB 3
 PlaceOrderFacadeResultFactory.class);

 this.service = (PlaceOrderService) TheBeanFactory
 .getBean("PlaceOrderService",
 PlaceOrderService.class);
 }
…

The createComponents() method calls TheBeanFactory, which is a helper class that
wraps a Spring BeanFactory, to create the components that the PlaceOrderFacade
EJB needs. The @PostConstruct annotation specifies that the EJB container must
call this method after it has instantiated the EJB. The Spring beans used by the
PlaceOrderFacade would be configured in the same way as the previous example.

 As this example shows, having the session bean call the Spring framework
enables the application to use dependency injection with arbitrary objects. The
downside is that the EJB must make explicit calls to Spring, which is extra code
that must be written and maintained. In addition, the dependency of the EJB on
Spring makes it more difficult to test. However, this approach is useful if your
application needs to use some functionality that is not provided by the EJB con-
tainer and that is only available in Spring.

10.5 Implementing other patterns with EJB 3

So far in this chapter we have looked at how to use EJB 3 to implement a domain
model that is encapsulated by a session façade. There are, of course, other design
options, such as the Exposed Domain Model pattern and the Transaction Script
pattern. In addition, you must consider other issues when developing the business
tier with EJB 3, issues such as database concurrency and efficient database queries.

10.5.1 Implementing the Exposed Domain Model pattern

In chapter 8 we described the Exposed Domain Model pattern, in which the pre-
sentation tier makes direct calls to the domain model without going through a
façade. An application that uses this pattern has a servlet filter that opens and
closes the JDO PersistenceManager or Hibernate Session. Each call to a domain
service occurs in a transaction, and when the presentation tier generates the
response, it accesses the persistent objects outside of a transaction. This pattern is
useful because you don’t have to develop a façade or worry about detaching the
objects that are required by the presentation tier.

Implementing other patterns with EJB 3 401
 Applications should also be able to able to use this pattern with EJB 3. The serv-
let filter uses an EntityManagerFactory to create an EntityManager, and transac-
tions are managed using EntityTransaction. Unfortunately, however, at the time
of this writing Spring does not yet provide support EJB 3 and so I haven’t been
able to try it.

10.5.2 Implementing the Transaction Script pattern

As you saw in chapter 9, it sometimes makes sense to implement business logic
using the Transaction Script pattern instead of the Domain Model pattern. The
Transaction Script pattern organizes the business logic as a set of procedural
transaction scripts that call DAOs to access the database. The DAOs access the
database using either JDBC or a higher level, easier to use API such as Spring’s
JDBC classes or iBATIS.

 There are a couple of ways to implement the transaction scripts in an EJB 3
application. One option is to implement the transaction scripts class and the
DAOs as stateless session beans, as shown in figure 10.6. This diagram shows the
EJB 3 version of transaction script example from chapter 9.

 In this example, PlaceOrderTransactionScripts, PendingOrderDAO, and Res-
taurantDAO are implemented as stateless session beans. EJB 3 dependency injec-
tion is used to wire together these components along with the JDBC DataSource.

 Using this approach is straightforward if the DAOs use JDBC directly because
the EJB container simply has to inject the DataSource, which is a standard J2EE
resource, into each DAO. However, DAOs often use a higher level, easier to use API
such as a Spring JdbcTemplate or SqlMapClientTemplate. In order for the EJB con-
tainer to inject these classes into a DAO, the Spring beans must be bound to JNDI,
as we described in section 10.4.2.

 The other option is to implement the DAOs as POJOs and to create them using
Spring. The transaction scripts EJB calls Spring to instantiate the DAOs, which
inject the JdbcTemplate or SqlMapClientTemplate class. The downside of this
approach is that the explicit calls to Spring make the transaction scripts more dif-
ficult to test.

10.5.3 Implementing dynamic paged queries

In chapter 11 we describe how to implement dynamic paged queries, which are
used to retrieve data that is displayed on search screens. Search screens allow the
user to enter search criteria and view the result set, which is often too large to load
into memory, let alone display on a single screen. Consequently, the user must be
able to page through the result set. Also, because the database is typically large it’s

402 CHAPTER 10

Implementing POJOs with EJB 3
important that the queries be optimized. To implement efficient paged queries,
there are several features that a persistence framework must provide. Let’s see
how EJB 3 does.

 First, the persistence framework must allow you to configure eager loading in
order for a query to retrieve related objects using a single SQL SELECT statement.
In this respect EJB 3 does well because it lets you configure eager loading. The
only limitation is that dynamically configuring eager loading can be difficult for
the reasons we outlined in section 10.1.2.

 Second, the persistence framework should support SQL queries, which are
sometimes necessary in order to get good performance. EJB 3 also supports SQL
queries, which are useful when a query must use database-specific SQL features to
be efficient. SQL queries can be statically defined in the O/R metadata or dynami-
cally created by the application. A query returns a result set that can contain a
mixture of entities and scalar values.

PlaceOrderTransactionScriptsImpl

<<interface>>
PendingOrderDAO

<<interface>>
RestaurantDAO

PendingOrder
DAOImpl

Restaurant
DAOImpl

DataSource

<<interface>>
PlaceOrderTransactionScripts

Figure 10.6
EJB 3 version of the
PlaceOrderTransactionsScripts

Summary 403
 Third, the persistence framework must allow the application to efficiently
select a range of rows from a large result set without loading it into memory. In
EJB 3, executing a query returns a list and you can specify the range of results to
return by calling Query.setFirstResult() and Query.setMaxResults(). However,
the specification does not give you any control over how the query is executed.
Furthermore, EJB specification does not describe whether the result set is pro-
cessed lazily or eagerly. Consequently, EJB 3 implementations will vary in how effi-
ciently they can handle large result sets.

 Finally, it is extremely helpful if the persistence framework supports Hiber-
nate-style criteria queries, which as you will see in chapter 11, are a good way to
construct queries dynamically. Unfortunately, EJB 3 lacks support for criteria que-
ries and the application must dynamically construct a query by concatenating
query fragments together, which results in messy code that is difficult to maintain.

10.5.4 Implementing the concurrency patterns

As you will see in chapter 12, most enterprise applications have to deal with data-
base concurrency at the database transaction level by using optimistic locking,
pessimistic locking, or serializable transactions. Optimistic locking is the only con-
currency mechanism currently supported by the EJB 3 specification. However, a
note in the specification states that a future version will describe how to control
the transaction isolation level. The EJB 3 specification does not mention pessimis-
tic locking, but presumably vendors will provide it as an extension.

 In addition to database transaction-level concurrency mechanisms, many
applications must also use the offline locking patterns, which are described in
chapter 13, to handle concurrency in use cases that consist of multiple transac-
tions. The two patterns are the Pessimistic Offline Lock pattern, which is applica-
tion-level locking, or the Optimistic Offline Lock pattern, which is an extension of
optimistic locking. It is easy to implement the Optimistic Offline Lock pattern
using detached entity beans. Similarly, implementing the Pessimistic Offline Lock
pattern is also straightforward because it does not rely on any persistence frame-
work features.

10.6 Summary

EJB 3 is a tremendous improvement over EJB 2. Because EJB 3 beans do not imple-
ment special interfaces, they are POJOs, which makes them much easier to write.
EJB 3 entity beans are intended to be the Java persistence standard and can run
both inside and outside the EJB container. They can also can be detached and

404 CHAPTER 10

Implementing POJOs with EJB 3
returned to the presentation tier, which eliminates the need to write DTOs. In
addition, because EJB 3 provides dependency injection, session and message-
driven beans rarely need to call JNDI to access their dependencies. EJB 3 has sensi-
ble defaults for many EJB configuration options, which means very little configu-
ration is required. If you are coming to EJB 3 from EJB 2 you will find it
considerably easier to use.

 But if you are already using lightweight technologies such as Spring, Hiber-
nate, and JDO, you will be disappointed. The O/R mapping defined in the June
2005 public draft had many limitations, including a lack of support for collections
of primitive types, and limited support for lists and maps. As a result, you must
decide between writing extra code and using vendor-specific features.

 Assembling an application’s components is a lot more difficult than when
using Spring because EJB dependency injection can only inject JNDI objects into
EJBs. You must implement all of the components as EJBs, explicitly call the Spring
bean factory, or expose Spring beans through JNDI. Furthermore, you have to
deal with the complexities of integrating an EJB container into your development
environment and live with the overhead of deploying session and message-driven
beans. Even though they are POJOs, they must still run in the EJB container.

 Despite these problems, EJB 3 will undoubtedly be used widely because it’s part
of the J2EE standard. However, it is just another implementation option available
to enterprise Java developers and, like all options, it has both benefits and draw-
backs. It is important to make careful decisions and remain focused on the goal of
simpler and faster development rather than being driven by fads and dogma.

Part 4

Dealing with databases
and concurrency

Part 4 looks at some important database-related issues that you often encounter
when developing an enterprise Java application. Chapter 11 describes how to
implement search screens that let the user enter search criteria and page through
the matching results. You will learn how to dynamically generate queries in a
maintainable way, efficiently query the database, and implement a paging mecha-
nism that allows the user to page through a large result set. This chapter covers
how to implement dynamic paged queries using iBATIS, JDO, and Hibernate, and
explains when you might want to use Hibernate and JDO native SQL queries.

Enterprise applications invariably have multiple users and background tasks,
which means that sometimes multiple database transactions will attempt to access
the same data simultaneously. In chapter 12, you will learn how to handle concur-
rent accesses at the database transaction level. This chapter describes how to han-
dle database concurrency in iBATIS, JDO, and Hibernate applications, and how
AOP can provide a simple way to recover from database concurrency failures.

Chapter 13 extends the concepts described in chapter 12 to handle database
concurrency across a sequence of transactions. Many web applications have edit-
style use cases that allow users to edit data in the database. The code that imple-
ments these use cases typically uses one database transaction to read the data and
another to update. In this chapter, you will learn how to handle database concur-
rency in edit-style use cases. You will learn about the various options and their
respective benefits and drawbacks.

Implementing
dynamic paged queries
This chapter covers
■ Implementing pagination
■ Dynamically generating queries
■ Efficiently querying large database
■ Using Hibernate and JDO native SQL queries
407

408 CHAPTER 11

Implementing dynamic paged queries
If an application stores data, then you can be certain that users need to access that
data in digestible chunks. All of the enterprise applications that I’ve developed
have featured search screens that allow the user to enter search criteria and page
through and sort long lists of items such as orders, mobile devices, and financial
transactions. Implementing these search screens was difficult. The applications
had to handle result sets consisting of hundreds of thousands of rows that were
too large to load into memory and to display on a single screen. They had to
dynamically generate database queries from the search criteria entered by the
user. These queries had to be carefully optimized in order to achieve acceptable
performance because the tables they accessed contained millions of rows.

 The burden of implementing efficient paged queries falls on the persistence
layer. When entity beans and JDBC were the only available options for accessing
the database, I had always implemented them by using JDBC to execute SQL
directly. Even though the code was very low-level and pretty messy, using JDBC was
easier than using esoteric vendor-specific extensions to EJB 2.0 CMP. However, as
you will see in this chapter, you now have more options. You can sometimes imple-
ment dynamic paged queries using JDO and Hibernate queries. They allow you to
optimize queries and handle large result sets. What’s more, if you must resort to
SQL you can execute it using Hibernate or JDO. Alternatively, you can use iBATIS,
which lets you dynamically generate queries with very little Java code.

 In this chapter you will learn how to implement dynamic paged queries using
iBATIS, JDO, and Hibernate. We describe a paging mechanism that avoids having
to load an entire result set into memory, and provide an overview of the various
ways to optimize the performance of SQL queries. In addition, we explain how to
configure JDO and Hibernate to use efficient queries. We show how to apply these
techniques by implementing the database access code for the View Orders use
case using the iBATIS, JDO, and Hibernate persistence mechanisms.

11.1 Key design issues

When you’re implementing dynamic paged queries, you must solve a number of
design problems. For example, you have to choose from one of several ways of
implementing a paging mechanism, each with its own benefits and drawbacks.
You must also decide the best way to generate the queries, which can be a mainte-
nance headache. Finally, you should have a good understanding of how to opti-
mize SQL queries because that can dramatically impact the performance of the
application. This section provides an overview of these issues, but first let’s look at
an example.

Key design issues 409
 A good example of a use case that takes advantage of dynamically generated
paged queries is the View Orders use case from the Food to Go application. It
describes how a customer service representative searches for orders.

Figure 11.1 shows the screen for this use case, which consists of a form for enter-
ing search criteria and a list of matching orders. The user can page through the
list of orders using the Next and Prev (Previous) buttons and can change the sort
order by clicking on a column header.

 Although the user interface and the underlying business logic for this kind of
use case appear to be quite simple, querying a large database has some tricky per-
sistence-tier design issues that must be solved in order for the application to be
responsive, scalable, and maintainable:

The customer service representative enters one or more of the following search
criteria: order number, phone number, email address, and date range. The sys-
tem displays the orders that match the search criteria.

Order #: Phone #: Email:

When: Today Find

Order # Phone # Email When Restaurant

Prev Next

Status

Figure 11.1 The screen for searching for and viewing orders

410 CHAPTER 11

Implementing dynamic paged queries
■ A query can return a result set that is too large to display on one page or
load into memory. The application must implement a paging mechanism
that loads and displays part of the result set.

■ There are usually too many permutations of search criteria to use a set of
static queries. The application must generate queries dynamically, which
requires conditional logic that is messy to write and difficult to maintain.

■ Queries can require careful optimization in order to achieve acceptable
performance because if the database is large, even simple queries can take
many seconds to execute if they are not tuned correctly.

In this section we’ll delve into the details of these design issues and describe some
solutions that you can use in an application that executes SQL statements directly
using either iBATIS or JDBC. In a later section we’ll cover the additional problems
that must solved when implementing this kind of use case using JDO and Hibernate.

11.1.1 Implementing a paging mechanism

Many applications let the user page backward and forward through a list of results
that is too long to display on a single screen. There are several different ways an
application can implement a paging mechanism. Table 11.1 lists the options
along with their benefits and drawbacks.

Table 11.1 Paging options

Option Benefits Drawbacks When to use it

Retrieve all the rows in
one query

Consistent reads
Executes a single
bbexpensive query

Cost of storing the data
Cost of executing the query

Small result sets

Retrieve primary keys Executes a single
bbexpensive query and
bbmultiple cheap ones

Inconsistent reads
Space overhead of storing
bbthe primary keys
Cost of executing the query

Modest result sets

Lazily iterate through
the JDBC ResultSet

Executes a single query
Consistent reads
Avoids reading a lot of
bbdata from the data-
bbbase in one go

Severely limits the scalabil-
bbity of the application
Long transaction could lock
bba large number of rows
Long-running serializable
bbtransaction could fail

Applications that
bbonly have a small
bbnumber of users

Repeatedly query the
database

Stateless
Retrieves only the data
bbthat will be displayed

Repeatedly querying the
bbdatabase
Inconsistent reads

Large result sets
Large numbers of
bbusers

Key design issues 411
Let’s look at each of these options.

Retrieving all the data using a single query
A simple approach that works well for small amounts of data is to execute a single
query and store the entire result set as part of the session state either in the server
or the browser.

 This approach has the following benefits:

■ It can be efficient because the application only executes a single database
query.

■ The application has a consistent view of the database because it executes a
single query.

The main drawback of this approach is that it is only practical when the result set
is small. Executing a query that returns a large result set would be too expensive.
It would be inefficient and impractical for the application to load a large result set
into the application server’s memory or send it to the browser. The result set
would occupy too much memory and take too much time to transfer over the net-
work. As a result, this approach is rarely useful.

Retrieving the primary keys
A variation on the first approach is for the application to first execute a query that
retrieves the primary keys of the matching rows and store them as part of the ses-
sion state. The application would then use a separate query to retrieve each page
of data using the primary keys obtained by the first query.

 This approach has a number of benefits:

■ The potentially expensive query that finds the matching rows is only exe-
cuted once.

■ It reduces the amount of data that needs to be stored as part of the session
state because primary keys are significantly smaller than the data.

It also has several drawbacks:

■ The database must find all of the matching rows even though the user
might only look at the first few.

■ If there are a large number of rows, the session state can be large even
though the application only stores the primary keys. The session state will
either require a lot of memory on the server or take a long time to transport
to the client.

412 CHAPTER 11

Implementing dynamic paged queries
■ The application does not have a consistent view of the database because it
can change between queries.

This strategy is best used when the queries return only a modest number of rows.

Holding onto database connections
Instead of loading all of the data in one go, another approach is for the applica-
tion to hold onto a database connection and iterate through the JDBC ResultSet
as the user pages through the list of orders.

 This approach offers these benefits:

■ It uses a single query, which is efficient and ensures a consistent view of the
database.

■ It does not store a large result set in the session state.

■ The database doesn’t have to find all of the matching rows immediately and
so it can execute the query lazily.

as well as the following drawbacks:

■ It does not scale to support a large number of users since database connec-
tions are a precious resource in a J2EE application.

■ The long-running query could potentially lock a large number of rows.

Because of these limitations, this approach is rarely practical.

Using multiple queries
As we have just seen, in most applications the result set is too large to load into
memory in its entirety. Furthermore, it’s usually impractical for the application to
hold onto database connections across user requests. Consequently, a more scal-
able approach is for the application to repeatedly query the database as the user
pages through the list of items. There are a couple of different ways to do this. One
option is for each query to return one page of data. Each time the user clicks on
the next or previous page button, the application retrieves another page of data
from the database. Another option, which reduces the number of database
accesses and improves the response time, is for each query to retrieve multiple
pages of data, which are then cached by the application as part of the session state.

 Here are the benefits of this approach:

■ It is scalable because it only uses a database connection for the duration of
each HTTP request.

Key design issues 413
■ It uses only a minimal amount of memory because only a subset of the data
is loaded.

■ It can reduce the load on the database since each query retrieves only a sub-
set of the rows.

There are a couple of drawbacks as well:

■ The application potentially executes the same query multiple times, which
can be inefficient.

■ The user might see an inconsistent view of the database because it could
change between queries.

Despite these drawbacks, this approach is the best choice for many applications,
and it is the strategy we will adopt for the example application.

11.1.2 Generating queries dynamically

Another challenge is how to dynamically generate the SQL SELECT statement. An
application must typically generate SQL statements dynamically because there are
too many permutations of search criteria to use a static set of statements. For exam-
ple, the view orders screen allows the user to enter four search criteria, and so we
would need to write and maintain 16 (24) queries, which would be pretty tedious.

Concatenate SQL fragments
One option is for the DAO to generate the SELECT statement by concatenating
fragments of SQL together. The DAO would, for example, construct the WHERE
clause of the SELECT statement from the search criteria entered by the user. How-
ever, the problem with this approach is that it is not very maintainable. As well as
being messy and error prone, it is difficult to locate and change SQL fragments
that are embedded in code. It is also difficult to test SQL statements using a tool
such as SQL*Plus because only fragments of the SQL exist in the DAO.

Using iBATIS dynamic mapped statements
A better approach is to use the dynamic mapped statement feature of iBATIS. An
iBATIS mapped statement can include conditional tags that use the properties of a
parameter bean to determine which SQL fragments should be part of the SQL
statement. This is an extremely useful feature of iBATIS that significantly reduces
the amount of DAO code. It also makes maintaining a SQL query easier because it
is stored in its entirety in the mapping file. Section 11.2 describes iBATIS dynamic
mapped statements in more detail.

414 CHAPTER 11

Implementing dynamic paged queries
 The problem of generating queries dynamically is not confined to applications
that use SQL directly. In section 11.3.1 you will see how JDO applications must also
generate queries by concatenating query fragments together. Hibernate, on the
other hand, has criteria queries that provide an object-oriented API for construct-
ing queries dynamically.

11.1.3 Improving the performance of SQL queries

Next, let’s look at the techniques you can use to improve query performance of a
SELECT statement. If the database is large, some queries—even simple ones—can
be expensive to execute. For example, consider the following simple SQL query,
which retrieves information about the orders that were placed in the past 30 days
and sorts them by external order ID:

SELECT o.*, r.name
FROM PLACED_ORDER o, RESTAURANT r
WHERE o.RESTAURANT_ID = r.RESTAURANT_ID
 AND o.DELIVERY_TIME > (SYSDATE - 30)
ORDER BY o.ORDER_EXT_ID DESC

Even when the application displays only the first few rows returned by the query,
this query can take several seconds to execute against a large database, which is
unacceptable for an interactive application. In addition, executing this query con-
sumes excessive database server resources, which limits scalability.

 You can improve query performance in several ways. Some performance
improvements are done on the database server and do not require code changes.
For example, defining the appropriate indexes can improve performance dramat-
ically without having to change the SQL statements. There are, however, other
performance optimizations that require the SQL statements to be changed:

■ Using query optimizer hints

■ Using the ROWNUM pseudo column

■ Denormalizing the schema

■ Rewriting queries to avoiding inefficient features

If your application uses iBATIS or JDBC, then changing the SQL statements is easy
because you have complete control over them. But, as we will see in section 11.3, if
the SQL statements are generated by the persistence framework, then implement-
ing these optimizations can be difficult or even impossible. Let’s look at each of
these query optimization techniques.

Key design issues 415
Using optimizer hints
One important way to improve the performance of a query is to use optimizer
hints, which are a database-specific way of influencing how the database executes
a SQL statement. They are useful when the database’s query optimizer is unable to
automatically determine the best way to execute a query. Using them in a JDBC or
iBATIS application is quite straightforward but in section 11.3, we will see that
Hibernate and JDO object queries do not support optimizer hints, which can
sometimes force you to use SQL queries instead.

 Each database has a different way of writing optimizer hints, and we’ll provide
an overview of how they work in Oracle. An Oracle optimizer hint is a specifically
formatted comment in a SQL statement that tells Oracle how to execute the state-
ment. Oracle provides several kinds of optimizer hints. The FIRST_ROWS(N) hint is
a good way to improve the performance of queries when the application only dis-
plays the first N rows of a result set, as is typically the case with search screens. By
default, the Oracle query optimizer assumes that an application wants all of the
rows returned by a query and aims to maximize throughput by, for example, min-
imizing the amount of I/O required to execute the query. Therefore, Oracle will
sometimes process the entire result set before returning the first rows back to the
application, which can be inefficient if the application only needs the first few rows.
It also results in a poor response time. The FIRST_ROWS(N) hint tells Oracle to exe-
cute the query in a way that minimizes the time to return the first N rows to the appli-
cation. This improves the response time and is often more efficient if the
application only wants the first N rows. The following query uses this hint to tell Ora-
cle to execute the query in a way that minimizes the time to return the first 20 rows:

SELECT /*+ FIRST_ROWS(20) */ o.*, r.name
FROM PLACED_ORDER o, RESTAURANT r
WHERE o.RESTAURANT_ID = r.RESTAURANT_ID
 AND o.DELIVERY_TIME > (SYSDATE - 30)
 ORDER BY o.ORDER_EXT_ID DESC

This query executes considerably faster than the original query shown earlier.
However, one downside of using this hint is that sometimes it has the opposite
effect and reduces the performance of the query. It is important to experiment.

Denormalizing the schema
If you can change the database schema, then another way to improve query perfor-
mance is to eliminate expensive joins by denormalizing the schema. For example,
we can eliminate the need to use a join between the PLACED_ORDER and RESTAU-
RANT tables by storing the restaurant’s name in the PLACED_ORDER table. A data-
base trigger would maintain consistency by updating the RESTAURANT_NAME column

416 CHAPTER 11

Implementing dynamic paged queries
in the PLACED_ORDER table whenever RESTAURANT.NAME was updated. Here is the
simplified query:

SELECT o.order_id, o.restaurant_name, …
FROM PLACED_ORDER o
WHERE o.DELIVERY_TIME > (SYSDATE - 30)
 ORDER BY o.ORDER_EXT_ID DESC

The query now just references the PLACED_ORDER table and gets the restaurant’s
name from the RESTAURANT_NAME column. Because this is a simple query, the bene-
fits of eliminating the join are relatively small. However, for more complex queries
the performance gains can be large.

 Writing queries that access denormalized columns is straightforward if you are
using JDBC or iBATIS, but in section 11.3.4 you will see that mapping denormal-
ized columns to the fields or properties of a domain model can affect it in
unpleasant ways.

Using the ROWNUM pseudo column
Normally, you want a query to return all of the matching rows in the database, but
search screens are different. They display one page of items at a time, and so the
application only wants a particular range of the rows from the database. One way
an application that uses JDBC can get a subset of rows is by skipping over the rows
in the JDBC ResultSet that it does not want and loading the rows that it does want.
Here is an example of JDBC code that does this:

PreparedStatement ps = …
ResultSet rs = ps.executeQuery();
rs.absolute(11);
int count = 10;
while (count-- > 0 && rs.next() {
…
}

This code uses ResultSet.absolute() to position the cursor on the 11th row and
then iterates through the ResultSet, getting the next 10 rows. One potential per-
formance problem with this approach is that the database might find all of the
rows when it executes the query even though the application only wants a few of
them. Another drawback is that some JDBC drivers will read the rows that are
skipped over from the database, which is inefficient because they are transferred
from the database and then discarded.

 An alternative approach, which avoids this problem, is to use a database-
specific SQL feature that restricts the range of rows returned by the query. Only
some databases have this feature, and it is implemented differently by each one.

Key design issues 417
Oracle has the ROWNUM pseudo column, whose value is the (1-based) position of a
row in the result set. A SQL SELECT statement can use the ROWNUM column in the
WHERE clause to control which rows it returns.

 A query can use the ROWNUM in a couple of ways. Let’s first look at the simplest
use, which is to return the first N rows selected by a query. For example, here is a
query that returns first 10 rows:

SELECT *
FROM (SELECT O.ORDER_ID, R.NAME, …
 FROM PLACED_ORDER O, RESTAURANT R
 WHERE O.RESTAURANT_ID = R.RESTAURANT_ID
 ORDER BY O.ORDER_EXT_ID
) WHERE ROWNUM < 11

This query nests the original query in SELECT ... WHERE ROWNUM < 11. Oracle
returns the first 10 rows matched by the query. The application could use a query
like this one to display the first page of a result set.

 A more elaborate use of ROWNUM is to select a range of rows. Here is a query that
returns rows 11 through 20:

SELECT *
FROM
 (SELECT ROWNUM AS RN, XX.*
 FROM
 (SELECT O.ORDER_ID, R.NAME, …
 FROM PLACED_ORDER O, RESTAURANT R
 WHERE O.RESTAURANT_ID = R.RESTAURANT_ID
 ORDER BY O.ORDER_EXT_ID
) XX
 WHERE ROWNUM < 21)
WHERE RN > 10

The inner query that uses ROWNUM returns the first 20 rows and the outer query
ignores the first 10 rows. An application could use a query like this one to display
all pages of a result set except the first.

 Using ROWNUM in a query has several benefits:

■ An application can ensure that Oracle only returns the rows that it wants.

■ It sometimes enables Oracle to execute the query more efficiently.

■ It reduces the amount of data transferred over the network.

However, using ROWNUM in a query can sometimes cause Oracle to execute the
query in a less efficient way, and so you should use it on a case-by-case basis.

 In section 11.3.5 you will see that Hibernate and some JDO implementations
provide the option of using ROWNUM-like features.

418 CHAPTER 11

Implementing dynamic paged queries
Tuning the queries
The fourth and final way to improve the performance of some SQL queries is to
rewrite them to use more efficient constructs. This is a complicated topic that is
described in numerous books including SQL Tuning [Tow 2003]. Examples of
what you can do to improve the performance of your query include eliminating
SQL functions from the SELECT statement’s WHERE clause and replacing a
complex SQL statement with the UNION ALL of two simpler ones. Rewriting the
SQL statement is only possible if the application executes SQL directly. If it queries
the database using the persistence framework’s object query mechanism, then you
have much less control over the SQL that is generated.

 It is also important to take into account database performance issues when
designing the UI. Examples of UI features that can cause database performance
problems include:

■ Case-insensitive substring searches, which, even though they appear to offer
the user a lot of flexibility, can be quite inefficient

■ Displaying the number of rows that match the query, which requires the
database process the entire result set even though only the first few rows are
displayed

■ An excessively large number of search and sort options, which requires
many indexes to be defined

Ideally, the user interface should only support searches that can be implemented
using efficient database queries.

 Now that we have reviewed the different ways to improve the performance of a
SQL SELECT statement, let’s look at the implementation of a DAO that uses iBATIS
to execute queries.

11.2 Implementing dynamic paged queries with iBATIS

The frameworks that you can use to implement the persistence layer include iBA-
TIS, Hibernate, and JDO. In this section you will learn how to implement dynamic
paged queries in an application that executes SQL using iBATIS. You will see an
example of how using iBATIS to construct the query simplifies the code signifi-
cantly. In section 11.3 we will see how to use JDO and Hibernate to implement
dynamic paged queries.

 In an iBATIS application, the query that retrieves the data displayed by the
search screen is executed by a DAO. The DAO typically defines a find method that
takes parameters that specify the search criteria and the range of rows to return.

Implementing dynamic paged queries with iBATIS 419
The find method executes a query and returns a list of DTOs and a flag that tells
the presentation tier whether to display a “next page” button.

 For example, the Food to Go application finds the orders using the OrderDAO,
which is shown in figure 11.2. The OrderDAO defines a findOrders() method,

org.
springframework.orm.iBatis

getSqlMapClientTemplate()

SqlMapClient
DaoSupport

queryForList()
...

SqlMapClient
Template

iBATIS

queryForList()
...

SqlMapClient

Order.xml

<sqlmap>

<select name="findOrders" ...>
SELECT *
FROM ORDER o, RESTAURANT r
WHERE ...
...
 <isNotEmpty>
 AND r.name = #restaurantName#
 </isNotEmpty>
...
</select>

<resultMap
 class="OrderSummaryDTO" ...>
...
</resultMap>

</sqlmap>

sqlMap-config.xml

<sqlMapConfig>
 <sqlMap resource="Order.xml" />

 ...
</ sqlMapConfig>

PagedQueryResult findOrders(startingIndex, pageSize,
 OrderSearchCriteria)

<<interface>>
OrderDAO

findOrders()

OrderDAO
IBatisImpl

restaurantName
...

OrderSearch
Criteria

more

PagedQuery
Result

orderId
deliveryTime
deliveryAddress
...

OrderSummary
DTO

findOrders(...) {
...
sqlMapClientTemplate
 .queryForList("findOrders",
 ...)

...
}

Figure 11.2 The iBATIS implementation of the OrderDAO

420 CHAPTER 11

Implementing dynamic paged queries
which has startingIndex and pageSize parameters that specify which page of the
result set to return, as well as a OrderSearchCriteria parameter that contains the
search criteria entered by the user and the selected sort order. It has properties
that represent the order number, phone number, email address, and date range.
The findOrders() method returns a PagedQueryResult object, which contains the
list of OrderSummaryDTO objects, and a boolean flag indicating whether there are
more orders.

 OrderDAOIBatisImpl, which implements the OrderDAO interface, calls SqlMap-
ClientTemplate to generate and execute the findOrders mapped statement,
which is defined in the Order.xml descriptor file. findOrders is an iBATIS dynamic
mapped statement. It contains conditional XML elements that use the values from
the OrderSearchCriteria JavaBean to determine whether to include one or more
SQL fragments in the statement. Using this mechanism to dynamically generate
SQL queries significantly simplifies the DAO by eliminating conditional logic and
code that concatenates SQL fragments. In fact, because iBATIS does all of the
work, findOrders() consists of a few lines of code that call SqlMapClientTem-
plate.queryForList(), which executes the query and returns a list of beans con-
structed from the result set.

 We have seen earlier that, depending on the query, we will want to select a page
of results by either navigating through the result set or by executing a SELECT state-
ment that uses a ROWNUM-like feature. Accordingly, iBATIS defines two versions of
the queryForList() method. One version takes parameters that specify the range
of rows to return. It navigates through the JDBC result to extract the specified rows.
The other version of queryForList() returns a list containing all of the rows found
by the query. It’s useful when the SQL query returns just the required rows by using
a ROWNUM-like feature. Let’s look at how to use each of these methods.

11.2.1 Using queryForList() to select the rows

The first version of queryListForList() that we will examine is the one that takes
parameters specifying the range of rows to return. Here is the implementation
of the OrderDAO.findOrders() method that executes a mapped statement using
this version:

public class OrderDAOIBatisImpl extends SqlMapClientDaoSupport
 implements OrderDAO {
 public PagedQueryResult findOrders(int startingIndex,
 int pageSize, OrderSearchCriteria criteria) {
 Map map = new HashMap();
 map.put("pageSize",
 new Integer(pageSize + startingIndex + 1));
 map.put("criteria", criteria);

Implementing dynamic paged queries with iBATIS 421
 List result = getSqlMapClientTemplate().queryForList(
 "findOrders", map, startingIndex, pageSize);
 boolean more = result.size() > pageSize;
 if (more) {
 result.remove(pageSize);
 }
 return new PagedQueryResult(result, more);
 }

This method creates a map containing the OrderSearchCriteria and the number
of desired rows. The findOrders() method then invokes queryForList(), passing
findOrders, the map, and the desired range of rows to be returned. The find-
Orders() method retrieves one more row than is actually required in order to
determine whether there are more rows. It removes the extra row from the list
before returning it.

 Listing 11.1 shows the findOrders dynamic mapped statement that is executed
by findOrders() and its result map. The mapped statement has conditional XML
elements that use the contents of the map, such as the properties of the Order-
SearchCriteria object, to dynamically construct the WHERE clause of the SELECT
statement. The result map constructs an OrderSummaryDTO from each row of the
result set.

<sqlMap>
…
 <select id="findOrders"
 resultMap="OrderResultMap"
 resultSetType="SCROLL_INSENSITIVE">
 SELECT /*+ FIRST_ROWS($pageSize$) */
 O.ORDER_ID, R.NAME AS RESTAURANT_NAME
 FROM FTGO_ORDER O,
 FTGO_RESTAURANT R
 WHERE O.RESTAURANT_ID = R.RESTAURANT_ID

 <isNotEmpty property="criteria.restaurantName">
 AND r.name = #criteria.restaurantName#
 </isNotEmpty>

 <isNotEmpty property="criteria.deliveryCity">
 AND o.delivery_city
 = #criteria.deliveryCity#
 </isNotEmpty>

 <isNotEmpty property="criteria.state">
 AND o.status = #criteria.state#
 </isNotEmpty>

Listing 11.1 The findOrders mapped statement and its result set

Specify the number of rows

Conditionally includes
restaurantName

Conditionally includes
deliveryCity

Conditionally
includes state

422 CHAPTER 11

Implementing dynamic paged queries
 ORDER BY o.ORDER_ID ASC
 </select>

 <resultMap id="OrderResultMap"
 class="net.chrisrichardson.foodToGo.
bbbbbbbbbbb➥ placeOrderTransactionScripts.details.
bbbbbbbbbb➥ OrderSummaryDTO">
 <result property="orderId" column="ORDER_ID" />
 <result property="restaurantName" column="RESTAURANT_NAME" />
 …
 </resultMap>
…
</sqlMap>

The query contains a FIRST_ROWS(N) optimizer hint that tells Oracle how many rows
the application wants. The dynamic mapped statement uses the <isNotEmpty> ele-
ment to conditionally include SQL fragments based on the properties of an Order-
SearchCriteria object. Each of the <isNotEmpty> elements adds to the SELECT
statement’s WHERE clause. For example, <isNotEmpty property="restaurantName">…
</isNotEmpty> adds AND r.name = #restaurantName# to the WHERE clause if the res-
taurantName property is not blank or null.

 iBATIS supports many other conditional elements in addition to the
<isNotEmpty> element, including an <iteration> element that iterates through a
list. See the iBATIS documentation for more information.

11.2.2 Using ROWNUM to select the rows

For some queries, navigating through the result set is the best approach. For oth-
ers, a more efficient approach is to use a query that uses a ROWNUM-like feature to
return only the needed rows. To execute this kind of query, the DAO can use the
version of queryForList() that returns the entire result set and pass the starting-
Index and the pageSize as parameters to the mapped statement. One convenient
way to do this is to call queryForList() with a Map containing the startingIndex,
pageSize, and the search criteria. Here is a version of findOrders() that does this:

public PagedQueryResult findOrders (int startingIndex,
 int pageSize, OrderSearchCriteria criteria) {
 Map map = new HashMap();
 map.put("startingIndex", new Integer(startingIndex));
 map.put("maxRows", new Integer(pageSize + startingIndex
 + 2));
 map.put("criteria", criteria);
 List result = getSqlMapClientTemplate().queryForList(

Implementing dynamic paged queries with iBATIS 423
 "findOrders", map);
 boolean more = result.size() > pageSize;
 if (more) {
 result.remove(pageSize);
 }
 return new PagedQueryResult(result, more);
 }

The dynamic mapped statement that is executed by this version of findOrders()
is similar to the one we saw earlier and uses the same result map. As well as using
the conditional XML tags to construct the WHERE clause, this mapped statement
uses them to nest the query inside a SELECT statement that uses ROWNUM to skip over
the number of rows specified by the start property.

 <sqlMap>

 <select id="findOrders" resultMap="OrderResultMap"
 resultSetType="SCROLL_INSENSITIVE">
 <isGreaterThan property=" startingIndex" compareValue="0">
 SELECT * FROM (SELECT XX.*,
 ROWNUM RNXX FROM (
 </isGreaterThan>

 SELECT * FROM (

 SELECT O.ORDER_ID, R.NAME AS RESTAURANT_NAME FROM FTGO_ORDER O,
 FTGO_RESTAURANT R
 WHERE O.RESTAURANT_ID = R.RESTAURANT_ID

 <isNotEmpty property="criteria.restaurantName">
 AND r.name = #criteria.restaurantName#
 </isNotEmpty>

 <isNotEmpty property="criteria.deliveryCity">
 AND o.delivery_city = #criteria.deliveryCity#
 </isNotEmpty>

 <isNotEmpty property="criteria.state">
 AND o.status = #criteria.state#
 </isNotEmpty>

 ORDER BY o.ORDER_ID ASC

) WHERE ROWNUM < #maxRows#

 <isGreaterThan property="start" compareValue="0">
) XX) WHERE RNXX > #startingIndex#
 </isGreaterThan>
 </select>
…
</sqlMap>

Skips over
startingIndex rows

Returns no more
than maxRows

Returns no more
than maxRows

Skips over
startingIndex rows

424 CHAPTER 11

Implementing dynamic paged queries
The innermost SELECT statement that uses ROWNUM returns startingIndex+page-
Size+1 rows. The outer statement, which is used only if start is greater than 0,
skips over the first pageSize rows.

 As you can see, you only need to write a few lines of Java code when using iBA-
TIS to execute a dynamically constructed query that returns a page of results. Let’s
now look at how to do the same thing with JDO and Hibernate.

11.3 Implementing paged queries with JDO and Hibernate

iBATIS certainly simplifies the task of executing SQL statements. But using an ORM
framework such as JDO and Hibernate has many benefits. For example, an ORM
framework significantly reduces the amount of database access code you must
write and increases your application’s portability. Consequently, it’s extremely
desirable to use one to implement dynamic paged queries. But how well do JDO
and Hibernate handle the issues discussed in section 11.1?

 As we have seen, when implementing dynamic paged queries in a JDBC or iBA-
TIS application, you must do three things. First, you must use carefully tuned SQL
SELECT statements that sometimes make use of vendor-specific features such as
optimizer hints in order to achieve good performance. Second, you must effi-
ciently select a page of rows by either navigating through the result set or using
queries that implement a ROWNUM-like feature. Finally, you must dynamically gener-
ate queries in a maintainable way. As you might expect, you have to do similar
things when using Hibernate or JDO, but because the persistence framework exe-
cutes SQL on behalf of the application, implementing dynamic paged queries effi-
ciently with JDO and Hibernate object queries can be tricky.

 To see why it can be difficult, let’s consider how a repository such as Order-
Repository uses the persistence framework to execute a query. As figure 11.3
shows, OrderRepository uses the search criteria entered by the user to generate
an object query and calls the persistence framework to execute it. The persistence
framework translates the object query into a SELECT statement and calls JDBC to
execute it. The persistence framework then iterates through the JDBC ResultSet,
creating Java objects

 The only control you have over the SQL STATEMENT used by the persistence
framework is to use features such as eager loading. You cannot execute object
queries that use database-specific features such as optimizer hints. If you need to
use these kinds of features to achieve good performance, then you must use SQL
native queries instead of object queries. However, the drawback of using native
SQL queries is that they don’t make full use of the capabilities of the persistence

Implementing paged queries with JDO and Hibernate 425
framework. Moreover, unlike iBATIS, Hibernate and JDO lack support for dynami-
cally generating SQL statements, which means that you will end up writing some
messy query-generation code.

 Another potential obstacle to implementing dynamic paged queries with a per-
sistence framework is that you might not be able to control how the persistence
framework selects a range of rows from the result set. Hibernate and some JDO

Database

Domain Model

Persistence Framework

createQuery ()
...

Connection

execute()
...

Query

JDBC

prepareStatement()
...

Connection

executeQuery()
...

Prepared
Statement

next()
getInt()
getString()
...

ResultSet

findOrders()

OrderRepository

Object/Relational Mapping

<class
 name="Order"
 table="PLACED_ORDER"
... >

</class>

Order

Restaurant

...

<<table>>
PLACED_
ORDER

<<table>>
RESTAURANT

...

Figure 11.3 How a query is executed when using a persistence framework

426 CHAPTER 11

Implementing dynamic paged queries
implementations such as Kodo JDO let you specify whether it should navigate the
result set or use a SELECT statement with a ROWNUM-like feature. However, there is
no guarantee that all JDO implementations provide this capability. As a result, you
might need to use iBATIS or JDBC instead.

 In this section, we provide an overview of how to implement efficient paged
queries with Hibernate and JDO object queries. You will learn about what support,
if any, Hibernate and JDO provide for dynamically generating object queries. We
describe how to persuade the persistence framework to execute an object query
using a SELECT statement similar to those that a JDBC or iBATIS application would
use. You’ll learn how JDO and Hibernate applications can implement pagination.
In sections 11.4 and 11.5 you will see how to apply the techniques described here
in more detail. In those sections we also describe how to use JDO and Hibernate
native SQL queries.

11.3.1 Generating Hibernate and JDO queries dynamically

One important aspect of implementing a search screen is generating queries
dynamically from the search criteria entered by the user. Ideally, you want to avoid
writing messy repository code that generates object queries by concatenating
query fragments. Unfortunately, JDO lacks support for dynamically generating
queries. Only Hibernate has APIs for dynamically generating object queries. Let’s
see how JDO and Hibernate repositories dynamically generate queries.

Dynamically generating JDO queries
A JDO application must generate an object query by concatenating fragments of
the JDO query language (JDOQL), which makes the code messy and error-prone.
Here is an example of a code fragment that constructs the WHERE clause of a query
from an OrderSearchCriteria:

…
public class JDOOrderRepositoryImpl … {

 public PagedQueryResult findOrders(int startIndex,
 int pageSize, OrderSearchCriteria criteria) {
 …
 StringBuffer where = new StringBuffer();
 Map parameters = new HashMap();
 if (criteria.isDeliveryCitySpecified()) {
 if (where.length() != 0)
 where.append(" && ");
 where.append("deliveryAddress.city == :pDeliveryCity");
 }
 if (criteria.isRestaurantSpecified()) {
 if (where.length() != 0)

Implementing paged queries with JDO and Hibernate 427
 where.append(" && ");
 where.append("restaurant.name == :pRestaurant");
 }
 …
 Query query = pm.createQuery(Order.class, where.toString());
 …
 List orders = (List)query.execute(…);
 …
 }
…
}

The code contains conditional logic that concatenates JDOQL fragments. Sec-
tion 11.4 shows an in-depth example that uses JDOQL queries.

Using Hibernate criteria queries
Hibernate, on the other hand, has criteria queries, which provide an OO API for
constructing object queries dynamically. The application instantiates objects and
calls methods instead of concatenating string fragments, which makes the code
significantly simpler. Here is a code fragment that shows how to use a Hibernate
criteria query:

public class HibernateOrderRepositoryImpl … {

 public PagedQueryResult findOrders(int startingIndex,
 int pageSize,
 OrderSearchCriteria searchCriteria) {
 …
 Criteria criteria = session
 .createCriteria(Order.class);
 …
 if (searchCriteria.isDeliveryTimeSpecified())
 criteria.add(Restrictions.ge("deliveryTime",
 searchCriteria.getDeliveryTime()));

 if (searchCriteria.isRestaurantSpecified()) {
 criteria.createCriteria("restaurant").add(
 Restrictions.like("name", searchCriteria
 .getRestaurantName()));

 List orders = criteria.list();
 …
 }
}

This code fragment creates a criteria object by calling a Session.createCriteria()
and then adds restrictions to it based on the properties of the OrderSearchCrite-
ria. We must still write conditional logic, but the code is a lot cleaner because it

428 CHAPTER 11

Implementing dynamic paged queries
doesn’t concatenate query fragments. In section 11.5 you will see an in-depth exam-
ple that uses criteria queries.

11.3.2 Loading the data with a single SELECT statement

Another important aspect of implementing a search screen is querying the data-
base efficiently. As we saw in section 11.1.3, there are a few things that you might
need to do to get good performance, but when using a persistence framework the
first step is to persuade to retrieve the data using a single SELECT statement. Even
though this sounds elementary, a persistence framework might not do this auto-
matically if the search screens display the attributes of multiple related objects. It
can, for example, load objects lazily, which requires multiple SELECT statements.

 For example, as you can see in figure 11.4, the View Orders screen displays
the orderNumber and deliveryTime attributes of an order, the phoneNumber and
email attributes of the order’s payment information, and the name of the order’s
restaurant. The presentation tier code that implements the View Orders screen
iterates through the list of orders and navigates to each order’s payment informa-
tion and restaurant.

 The persistence framework must retrieve this data using a single SELECT state-
ment. It must not, for example, lazily load the restaurants by executing multiple
SELECT statements that each loads one restaurant from the RESTAURANT table
because that can reduce performance significantly. As we have seen in chapters 4,
5, and 6, you can optimize object loading by eliminating SQL statements by using
either process-level cache or eager loading.

 We could, for example, improve the performance of the View Orders query by
caching the restaurants in the process-level cache, as we saw in chapter 4. Execut-
ing a query that retrieves just orders will work just fine. The application will
retrieve the restaurants from the process-level cache when it navigates to them.

 Alternatively, we can improve the performance of the View Orders query by
eagerly loading the restaurants. The persistence framework will then execute a
SELECT statement that does a join between the PLACED_ORDER and RESTAURANT
tables. The details of how you configure and use eager loading depend on which
persistence framework you are using. As we saw in chapter 5, a JDO application
uses fetch groups to configure eager loading, and in chapter 6 we saw that a
Hibernate application uses queries with fetch joins. Let’s see how fetch groups
can be used here in the query that retrieves orders.

Implementing paged queries with JDO and Hibernate 429
Using JDO fetch groups
JDO 2.0 has a powerful fetch group mechanism, which allows the developer to
specify a graph of objects to eagerly load. Here is an example of fetch group for
the Order class that loads some of its fields and the name field of its restaurant:

Order # Phone # Email When Restaurant Status

orderNumber
deliveryTime
status
...

Order

phoneNumber
email
...

Payment
Informat ion

name

Restaurant

RESTAURANT_ID <<pk>>
NAME

...

<<table>>
RESTAURANT

ORDER_ID <<pk>>
ORDER_NUMBER
RESTAURANT_ID <<fk>>
PAYMENT_PHONE
PAYMENT_EMAIL

...

<<table>>
PLACED_ORDER

Figure 11.4 The relationship between the View Orders screen, the domain model, and the
database schema

430 CHAPTER 11

Implementing dynamic paged queries
<class name="Order">

 <fetch-group name="Order.summary">
 bb<field name="orderId"/>
 bb<field name="status"/>
 bb…
 bb<field name="restaurant.name"/>
 </fetch-group>

</class>

The <fetch-group> element defines the Order.summary fetch group that consists of
fields, including Order.orderId and Order.status, and the name of the restaurant.

 Here is how you would execute a query that uses this fetch group:

public class JDOOrderRepositoryImpl … {

 public PagedQueryResult findOrders(int startIndex,
 int pageSize,
 OrderSearchCriteria searchCriteria) {
 …
 Query query = pm.newQuery(Order.class, …);
 FetchPlan fp = query.getFetchPlan();
 fc.addGroup("Order.summary");
 …
 Collection result = (Collection)query.execute();
 …
 }

…
}

This code fragment configures the query to use the Order.summary fetch group.
The JDO implementation will retrieve the orders and their restaurants by execut-
ing this query using a SQL SELECT statement that does a join between the
FTO_ORDER and RESTAURANT tables and returns only those columns that corre-
spond to the fields in the fetch group. Note, however, that you might need to con-
figure eager loading using a vendor-specific mechanism such as Kodo JDO 3.3’s
per-field fetch mechanism if you are using a JDO implementation that does not yet
support the JDO 2.0 standard. In section 11.4, we will look at an implementation
of the OrderRepository that uses Kodo JDO’s per-field fetch mechanism to opti-
mize object loading.

Using Hibernate fetch joins
Hibernate provides fetch joins for eagerly loading objects when executing a
query. An application uses a fetch join in a criteria query by calling Crite-
ria.setFetchMode(). This method takes two parameters that specify the name of

Implementing paged queries with JDO and Hibernate 431
the relationship and whether to load it eagerly or lazily. For example, here is a
criteria query that finds orders and loads their restaurants eagerly:

public class HibernateOrderRepositoryImpl … {

 public PagedQueryResult findOrders(int startingIndex,
 …
 List orders = session
 .createCriteria(Order.class)
 .add(Expression.eq("deliveryAddress.city", "San Francisco"))
 .setFetchMode("restaurant",FetchMode.JOIN)
 .list()
 …
 }
 …
}

Hibernate will execute this query using a SELECT statement that does a join
between the PLACED_ORDER and RESTAURANT tables.

 In addition to eagerly loading the related objects, another way to optimize object
loading is to load only those object fields that are required. Let’s take a look.

11.3.3 Loading a subset of an object’s fields

Search screens typically display a subset of each object’s fields and require the
user to navigate to a details screen to see the rest. For example, as figure 11.1
shows, the View Orders screen only displays the order’s number, phone number,
email, delivery time and status, and the restaurant’s name. We can rely on lazy
loading to prevent the query from unnecessarily loading related objects such as
the order’s line items or the restaurant’s menu items. But, by default, JDO and
Hibernate will load all of an object’s attributes and all of the attributes of its
embedded objects.

 This means, for example, that the persistence framework will execute a SELECT
statement that retrieves the order’s delivery address, which is an embedded
object, even though it is never displayed. The PLACED_ORDER table only has a few
columns; the overhead of loading them all is insignificant. But if a table has many
columns or has columns containing large values, then loading only the required
objects can often improve performance. Not only does this approach reduce the
amount of data that is transferred over the network from the database to the
application, but it also reduces the amount of processing that the persistence
framework must do to instantiate the Java objects.

 As we have seen in chapters 4, 5, and 6, JDO and Hibernate provide various mech-
anisms for controlling which fields are loaded. The three mechanisms that are par-
ticularly useful when implementing dynamic paged queries are JDO fetch groups,

432 CHAPTER 11

Implementing dynamic paged queries
Hibernate projection queries, and JDO projection queries. Hibernate lazily loaded
properties are not that useful for the reasons we saw in chapter 6. Let’s review how
each of these mechanisms can be used to improve the performance of the View
Orders query.

Using JDO fetch groups to load a subset of an object’s fields
Until now we have used JDO fetch groups to eagerly load objects, but you can also
use them to load only a subset of an object’s fields. To do that, you must first
define a fetch group that specifies the required fields. For example, here is a fetch
group containing fields displayed on the view orders screen:

<class name="Order">

 <fetch-group name="Order.summary">
 bb<field name="orderId"/>
 bb<field name="status"/>
 bb<field name="paymentInformation.email"/>
 bb<field name="paymentInformation.phone"/>
 bb<field name="restaurant.name"/>
 </fetch-group>

</class>

The <fetch-group> element defines the Order.summary fetch group containing
several fields, including Order.orderId and Order.status, and the name of the
restaurant.

 You then activate the fetch group by replacing the currently active fetch
groups with this one fetch group:

public class JDOOrderRepositoryImpl … {

 public PagedQueryResult findOrders(int startIndex,
 int pageSize,
 OrderSearchCriteria searchCriteria) {
 Query query = pm.newQuery(Order.class, …);
 FetchPlan fp = query.getFetchPlan();
 fc.setFetchGroup("Order.summary");
 Collection result = (Collection)query.execute();
 …
 }

…
}

This code fragment calls FetchPlan.setFetchGroup(), which replaces the currently
active fetch groups with the Order.summary fetch group. The JDO implementation

Implementing paged queries with JDO and Hibernate 433
then executes a SELECT statement that does a join between the PLACED_ORDER and
RESTAURANT tables and returns only those columns corresponding to the fields
specified in the fetch group.

Using JDO projection queries
Another way a JDO application can load a subset of an object’s fields is to use pro-
jection queries, which are a new feature of JDO 2.0, and return DTOs containing
selected fields. Here is an example of how to use the Kodo JDO 3.x extensions to
execute a projection query that finds all orders whose delivery date is in the past
week. It returns a collection of OrderSummaryDTO objects containing the ID, deliv-
ery time, phone number, email, and restaurant name of each order:

public class JDOOrderRepositoryImpl extends
 JdoDaoSupport implements OrderRepository {

…
 public List findOrdersUsingProjection() {
 return (List) getJdoTemplate().executeFind(
 new ProjectionQueryCallback());
 }

 private final class ProjectionQueryCallback
 implements JdoCallback {
 public Object doInJdo(PersistenceManager pm)
 throws JDOException {
 Calendar c = Calendar.getInstance();
 c.add(Calendar.DAY_OF_WEEK, -7);
 Date deliveryTime = c.getTime();

 String queryString =
 "select id as orderId, deliveryTime, "
 + " paymentInformation.email as email, "
 + " paymentInformation.phoneNumber as phoneNumber, "
 + " restaurant.name as restaurantName "
 + " into " + OrderSummaryDTO.class.getName()
 + " from " + Order.class.getName()
 + " where deliveryTime >= :pDeliveryTime";

 Query query = pm.newQuery(queryString);
 Map map = new HashMap();
 map.put("pDeliveryTime", deliveryTime);
 List result = (List) query
 .executeWithMap(map);
 return result;
 }
 }

…
}

434 CHAPTER 11

Implementing dynamic paged queries
Kodo JDO executes a SQL SELECT statement that retrieves only the columns corre-
sponding to the fields specified by the query’s select clause and returns a collec-
tion of OrderSummaryDTO objects. For each row in the result set, Kodo instantiates
an OrderSummaryDTO using its default constructor and initializes it by calling set-
ters, including setOrderId(), setDeliveryTime(), and setEmail().

 If you do not need the persistent objects, then JDO projection queries are a
useful way to retrieve only the required fields without going to the trouble of
defining fetch groups.

Using Hibernate projection queries
Hibernate projection queries, like JDO projection queries, return DTOs rather
than persistent objects and can be used to load a subset of an object’s properties.
Here is an example of a criteria query that returns just the ID and delivery-
Address.street1 property of the orders:

Criteria x = session.createCriteria(Order.class);
x.setProjection(Projections.projectionList()
 .add(Property.forName("id"))
 .add(Property.forName("deliveryAddress.street1")));
List result = x.list();
Object[] result = x.get(0);

Hibernate executes a query that retrieves only the columns corresponding to the
specified properties. Each element of the result list is an Object[] containing two
elements. Criteria queries that use projections are sometimes useful, but one
apparent limitation of criteria projection queries is that they cannot return the
property of a related object, such as the name of an order’s restaurant. Another
limitation of projection queries is that each item in the projection list must map
to a single column. This means that you cannot easily retrieve an embedded value
object, such as an order’s delivery address. Consequently, if you need to retrieve
the properties of related objects or embedded value objects, then you have to use
a regular criteria query.

11.3.4 Working with a denormalized schema

A common technique for improving performance is to denormalize the schema,
which reduces the number of joins that a SQL SELECT statement must use. In
order for the denormalized columns to be accessible to an application that uses a
persistence framework, they must be mapped to fields or properties in the object
model. For example, if we replicated the restaurant name by adding a

Implementing paged queries with JDO and Hibernate 435
RESTAURANT_NAME column to the PLACED_ORDER table, we would have to map that
column to a restaurantName field in the Order class.

 Although it is easy to define the O/R mapping for denormalized columns,
changing the object model to reflect the denormalized database schema intro-
duces additional complexity and maintenance problems. For example, because
the denormalized column is maintained by a trigger, the corresponding field will
not have a valid value in a newly created object or during in-memory testing
unless the domain model contains extra code to initialize it.

 Here is an example of the kind of code you need to write in your domain
model objects to support denormalized columns:

public class Order {

 private String restaurantName;

 public Order(String externalOrderId, Address address,
 Date date, Restaurant restaurant,
 PaymentInformation information) {
 this.restaurantName = restaurant.getName();
 …
 }

 public String getRestaurantName() {
 return restaurantName;
 }
…
}

In this example, the Order class has a restaurantName field that is initialized by the
constructor, which calls Restaurant.getName(). Although this is a minor change,
lots of little changes such as this can be messy.

11.3.5 Implementing paging

The fourth and final part of implementing dynamic paged queries with Hibernate
and JDO is handling pagination. A query such as View Orders can potentially
return a large number of objects. We definitely do not want Hibernate or JDO to
instantiate a list containing the entire result set, especially if the application will
only display a subset of the elements. Instead, we must ensure that the persistence
framework does one of two things:

■ Execute a SELECT statement that uses a ROWNUM-like feature to return only the
required range of rows

■ Execute a SELECT statement that returns all rows and then navigate the JDBC
ResultSet selecting the required rows

436 CHAPTER 11

Implementing dynamic paged queries
Sometimes, depending on the query, one of these approaches is significantly
more efficient than the other. Let’s look at how you can select a page of results
using JDO and Hibernate.

Implementing paging in JDO
There are two ways a JDO application can select a page from a result set. It can
either specify the required range of objects when it executes the query, or it can
pick the required objects out of the collection returned by Query.execute(). The
application specifies the range of rows by calling Query.setRange() with the start-
ing index and page size, or by using the range <from>,<to> clause in a JDOQL
query string. Here is an example of such a JDOQL query:

select from net.chrisrichardson.foodToGo.domain.Order
range 0 to 10

The Query.execute() method will return a collection containing only the first ten
objects.

 Alternatively, the application can pick the required objects out of the collec-
tion returned by Query.execute() by either using an iterator or calling
List.get().

 A potential problem with both of these approaches is that the JDO specifica-
tion does not describe how the JDO implementation implements queries. There is
no guarantee that the JDO implementation implements JDOQL ranges by execut-
ing a SQL SELECT statement that has a ROWNUM-like construct or will lazily navigate
the JDBC ResultSet as the application iterates through the collection. The JDO 2.0
specification does not give you a way to control how the JDO implementation exe-
cutes the query and processes the result set.

 Fortunately, some JDO implementations such as Kodo JDO let you choose
between navigating the result set and using a ROWNUM query. For example, Kodo
JDO always uses ROWNUM if you specify the range when querying an Oracle database.
In addition, Kodo JDO can be configured to process the result set lazily, which
enables it to efficiently handle large result sets. As the application accesses the ele-
ments of the collection returned by the JDO query, Kodo JDO iterates through the
underlying JDBC ResultSet, loading objects. Kodo JDO gives you the flexibility
you need to efficiently implement paging, but if you are using another JDO imple-
mentation you should consult its documentation to determine how it implements
ranges and processes result sets.

Implementing paged queries with JDO and Hibernate 437
Implementing paging in Hibernate
Hibernate provides two ways of selecting a range of rows from a result set when
executing criteria queries. The easier approach is to tell Hibernate the desired
range of rows using the Criteria.setFirstResult() and Criteria.setMax-
Results() methods and then execute the query using Criteria.list(), which
uses a ROWNUM SELECT statement and returns a list containing the specified rows.
The other option is to execute the query using Criteria.scroll(), which returns
a ScrollableResults that wraps the JDBC ResultSet. The application can then
navigate the ScrollableResults, selecting the rows that it needs.

 Here is an example of a query that uses Criteria.list() to retrieve orders 100–
199 that are for delivery in San Francisco:

List orders = session
 .createCriteria(Order.class)
 .add(Restrictions.eq("deliveryAddress.city", "San Francisco"))
 .setFetchMode("restaurant",FetchMode.JOIN)
 .setFirstResult(100)
 .setMaxResults(100)
 .list()

This example calls setFirstResults() to specify the first order to return and set-
MaxResults() to specify how many orders to return. Hibernate retrieves the speci-
fied rows in two ways. If supported by the database, Hibernate generates a SQL
SELECT statement that uses a ROWNUM-like feature to return only the specified rows
using a database-specific SQL feature. If the database does not support this fea-
ture, then Hibernate executes a SELECT statement that retrieves all rows and then
navigates the JDBC ResultSet and picks out the specified rows.

 Instead of using list(), the application can use scroll() and navigate Scrol-
lableResults and select the required rows. Here is an example code fragment
that uses scroll() to retrieve orders 100–199:

ScrollableResults results = session
bb.createCriteria(Order.class)
bb.add(Restrictions.eq("deliveryAddress.city", "San Francisco"))
bb.setFetchMode("restaurant", FetchMode.JOIN).scroll();
List orders = new ArrayList();
int pageSize = 100;
if (results.first() && results.scroll(100)) {
bbfor (int i = 0; i < pageSize; i++) {

 bbbbbbborders.add(results.get(0));
 bbbbbbbif (!results.next())break;

bb}
}

438 CHAPTER 11

Implementing dynamic paged queries
This example calls ScrollableResults.scroll() to skip over the first 100 rows
and ScrollableResults.next() to move through the orders. You need to write
more code when using Criteria.scroll() than you do when using list(), but it
is a more efficient way to execute some queries.

 At this point you’ve had an overview of the challenges of implementing effi-
cient dynamic paged queries in a Hibernate or JDO application. Next, let’s take an
in-depth look at using JDO.

11.4 A JDO design example

In a JDO application, queries are typically executed by the domain model’s reposi-
tories. This means that the code that implements a search screen will ultimately call
a repository, which must generate a query and call JDO to execute it. Figure 11.5
shows the JDO version of the OrderRepository, which is responsible for retrieving
orders from the database.It defines a findOrders() method whose signature is sim-
ilar to the OrderDAO method we saw earlier. The startingIndex and pageSize

Spring

JDO
OrderRepository

Impl

more

Order

<<interface>>
JdoCallback execute(JdoTemplate)

JdoTemplate

PagedQueryResult findOrders(startingIndex, pageSize, OrderSearchCriteria)
...

<<interface>>
OrderRepository

PagedQuery
Result

JDOFindOrders
Callback

Figure 11.5 The JDO version of the design for finding orders

A JDO design example 439
parameters specify the desired page, and the OrderSearchCriteria parameter con-
tains the search criteria entered by the user. It returns a PagedQueryResult that con-
tains a list of Order objects and a boolean flag indicating whether there are
more.The OrderRepository interface is implemented by the JDOOrderRepository-
Impl class. This class generates a query from the OrderSearchCriteria and uses a
Spring JdoTemplate to execute it. Because it uses the JDO APIs to configure the
fetch groups, the query is executed using a JdoCallback rather than a JdoTemplate
convenience method. Let’s look at the JDOOrderRepositoryImpl and JDOFind-
OrdersCallback classes.

11.4.1 The JDOOrderRepositoryImpl class

The biggest challenge when implementing a method such as findOrders() is
dynamically constructing the query. JDO does not provide any support for gener-
ating queries dynamically. The repository must concatenate fragments of JDOQL
to create a complete query, which requires some conditional logic. Listing 11.2
shows findOrders() and its helper methods, which construct a query using a
StringBuffer.

public class JDOOrderRepositoryImpl extends JdoDaoSupport implements
 OrderRepository {

 public JDOOrderRepositoryImpl(JdoTemplate jdoTemplate) {
 setJdoTemplate(jdoTemplate);
 }

 public PagedQueryResult
 findOrders(int startIndex,
 int pageSize,
 OrderSearchCriteria criteria) {

 StringBuffer queryString = makeSelectFrom();
 Map parameters = addWhere(queryString, criteria);
 addOrderBy(queryString, criteria);
 addRange(queryString, startIndex, pageSize);
 return executePagedQuery(pageSize, queryString, parameters);
 }

 private StringBuffer makeSelectFrom() {
 StringBuffer queryString = new StringBuffer();
 queryString
 .append("select from ")
 .append(Order.class.getName());
 return queryString;

Listing 11.2 JDOOrderRepositoryImpl

B Calls helper methods
to execute query

C Creates
start of query

440 CHAPTER 11

Implementing dynamic paged queries
 }

 private Map
 addWhere(StringBuffer queryString,
 OrderSearchCriteria criteria) {
 StringBuffer where = new StringBuffer();
 Map parameters = new HashMap();
 if (criteria.isDeliveryCitySpecified()) {
 if (where.length() != 0)
 where.append(" && ");
 where.append("deliveryAddress.city == :pDeliveryCity");
 parameters.put("pDeliveryCity",
 criteria.getDeliveryCity());
 }
 if (criteria.isRestaurantSpecified()) {
 if (where.length() != 0)
 where.append(" && ");
 where.append("restaurant.name == :pRestaurant");
 parameters.put("pRestaurant",
 criteria.getRestaurantName());
 bb}

 bb// ...

 if (where.length() != 0)
 queryString.append(" where ").append(where);

 return parameters;
 }

 private void
 addOrderBy(StringBuffer queryString,
 OrderSearchCriteria criteria) {
 queryString.append(" order by ");
 queryString.append(getSortField(criteria));
 queryString.append(criteria.isSortAscending() ? " asc "
 : " desc ");
 }

 private void
 addRange(StringBuffer queryString,
 int startIndex, int pageSize) {
 int endIndex = startIndex + pageSize + 1;
 queryString.append(" range ").append(' ')
 .append(startIndex).append(' ').append(" to ")
 .append(endIndex);
 }

 private PagedQueryResult
 executeQuery(int pageSize,

Adds where clauseD

E Adds order by clause

F Adds range clause

G Executes callback

A JDO design example 441
 StringBuffer queryString,
 Map parameters) {
 PagedQueryResult result = (PagedQueryResult) getJdoTemplate()
 .execute(
 new ExecuteFindOrdersQuery(queryString
 .toString(), pageSize, parameters));

 return result;
 }

 }

Let’s look at the details:

The findOrders() method calls a series of helper methods that construct a JDOQL
query from the OrderSearchCriteria and execute it.

The makeSelectFrom() method creates the initial part of the query.

The addWhere() method constructs the where clause and appends it to the query.
It has conditional logic that adds an expression to the where clause for each of the
search criteria that has been specified in the OrderSearchCriteria object. The
addWhere() method returns a map containing the query parameters, which is later
passed to Query.executeWithMap().

The addOrderBy() method adds an order by clause to the query.

The addRange() method adds a range clause to the query.

The executeQuery() method executes the query using ExecuteFindOrdersQuery,
which is a JdoCallback.

As you can see, we had to write a lot of code to generate a JDO query. Even if some
code is refactored into a reusable utility class, the repository would still contain
some messy conditional logic and JDOQL fragments, which makes it error-prone
and difficult to maintain. But we mostly have to tolerate this problem because of
the benefits of JDOQL.

11.4.2 The ExecuteFindOrdersQuery class

ExecuteFindOrdersQuery is a JdoCallback that is executed by JDOOrderRepository-
Impl. It defines a doInJdo() method, which is called by the JdoTemplate. This
method uses the Kodo JDO APIs to configure the object loading and execute the
query. Here is the code:

B

C

D
E

F

G

442 CHAPTER 11

Implementing dynamic paged queries
class ExecuteFindOrdersQuery implements JdoCallback {
 private final String queryString;

 private final int pageSize;

 private final Map parameters;

 private ExecuteFindOrdersQuery(String queryString,
 int pageSize, Map parameters) {
 this.queryString = queryString;
 this.pageSize = pageSize;
 this.parameters = parameters;
 }

 public Object doInJdo(PersistenceManager pm)
 throws JDOException {
 Query query = pm.newQuery(queryString.toString());
 KodoQuery kquery = (KodoQuery) query;
 FetchConfiguration fc = kquery.getFetchConfiguration();
 fc.addField(Order.class.getName() + ".restaurant");
 List result = new ArrayList((List) query
 .executeWithMap(parameters));

 boolean more = result.size() > pageSize;
 if (more)
 result.remove(pageSize);
 return new PagedQueryResult(result, more);
 }
}

The doInJdo() method creates a query, calls configureFetchGroups(), executes
the query, and creates the PagedQueryResult containing the list of orders and the
more flag.

 But sometimes you must execute queries that require the use of SQL features
such as optimizer hints in order to achieve good performance. That is when you
must use a JDO native SQL query.

11.5 A Hibernate design example

As with JDO, queries in a Hibernate application are typically executed by domain
model repositories. The Hibernate version of the OrderRepository, which is pretty
similar to the JDO version, is shown in figure 11.6. The OrderRepository interface
is implemented by HibernateOrderRepositoryImpl, which uses the Spring Hiber-
nateTemplate to construct and execute a Hibernate criteria query.

 The OrderRepository interface is implemented by the HibernateOrderReposi-
toryImpl class. It uses a Spring HibernateTemplate to execute a HibernateCallback

A Hibernate design example 443
that generates a query from the OrderSearchCriteria using the Hibernate Crite-
ria API. Let’s look at the HibernateOrderRepositoryImpl and HibernateFind-
OrdersCallback classes.

11.5.1 The HibernateOrderRepositoryImpl class

The findOrders() method is extremely simple. It uses a HibernateTemplate to
execute a FindOrdersHibernateCallback, which does all of the work. Here is the
code for HibernateOrderRepositoryImpl:

public class HibernateOrderRepositoryImpl extends
 HibernateDaoSupport implements OrderRepository {

 public PagedQueryResult findOrders(int startingIndex,
 int pageSize,
 OrderSearchCriteria searchCriteria) {
 bbreturn (PagedQueryResult) getHibernateTemplate().execute(
 bbnew FindOrdersHibernateCallback(startingIndex,
 bbpageSize, searchCriteria));
 }
}

Spring

Impl

more

PagedQuery
Result

Order

<<interface>>
HibernateCallback

execute(HibernateTemplate)

HibernateTemplate

Hibernate

<<interface>>
Session

<<interface>
Criteria

Hibernate
OrderRepository

Hibernate
FindOrders

Callback

PagedQueryResult findOrders(startingIndex, pageSize, OrderSearchCriteria)
...

<<interface>>
OrderRepository

Figure 11.6 Hibernate implementation of the OrderRepository

444 CHAPTER 11

Implementing dynamic paged queries
The findOrders() method instantiates a FindOrdersHibernateCallback, passing
startingIndex, pageSize, and searchCriteria as constructor arguments.

11.5.2 The FindOrdersHibernateCallback class

FindOrdersHibernateCallback, which is shown in listing 11.3, is a Spring Hiber-
nateCallback and has a doInHibernate() method that constructs and executes a
criteria query. It builds the restrictions and sort order for query using the proper-
ties of the OrderSearchCriteria.

private final class FindOrdersHibernateCallback implements
 HibernateCallback {
 private final int startingIndex;

 private final int pageSize;

 private final OrderSearchCriteria searchCriteria;

 private FindOrdersHibernateCallback(int startingIndex,
 int pageSize, OrderSearchCriteria searchCriteria) {
 super();
 this.startingIndex = startingIndex;
 this.pageSize = pageSize;
 this.searchCriteria = searchCriteria;
 }

 public Object
 doInHibernate(Session session)
 throws HibernateException, SQLException {
 Criteria criteria = session.createCriteria(Order.class);
 addCriteria(criteria, searchCriteria);
 addSortBy(criteria, searchCriteria);
 addRange(criteria);
 List result = criteria.list();
 return makePagedQueryResult(result);
 }

 public void
 addCriteria(Criteria criteria,
 OrderSearchCriteria searchCriteria)
 throws HibernateException {
 if (searchCriteria.isDeliveryTimeSpecified()) {
 bbcriteria.add(Restrictions.ge("deliveryTime",
 bbsearchCriteria.getDeliveryTime()));
 }
 if (searchCriteria.isRestaurantSpecified()) {
 bbcriteria.createCriteria("restaurant").add(

Listing 11.3 FindOrdersHibernateCallback

Creates and executes
criteria query

B

C Adds
search criteria

A Hibernate design example 445
 bbRestrictions.like("name", searchCriteria
 bb.getRestaurantName()));
 } else {
 bbcriteria.setFetchMode("restaurant", FetchMode.JOIN);
 }
 if (searchCriteria.isDeliveryCitySpecified()) {
 bbcriteria.add(Restrictions.eq("deliveryAddress.city",
 bbsearchCriteria.getDeliveryCity()));
 }
 …

 }

 private void
 addSortBy(Criteria criteria,
 OrderSearchCriteria searchCriteria) {
 switch (searchCriteria.getSortBy()) {
 case OrderSearchCriteria.SORT_BY_ORDER_ID:
 bbcriteria
 bb.addOrder(searchCriteria.isSortAscending() ?
 bborg.hibernate.criterion.Order
 bb.asc("externalOrderId")
 bb: org.hibernate.criterion.Order
 bb.desc("externalOrderId"));
 break;
 …
 default:
 bbthrow new NotYetImplementedException();
 }
 }

 private void addRange(Criteria criteria) {
 criteria.setFirstResult(startingIndex);
 criteria.setMaxResults(pageSize + 1);
 }

 private PagedQueryResult
 makePagedQueryResult(List result) {
 boolean more = result.size() > pageSize;
 if (more) {
 bbresult.remove(pageSize);
 }
 return new PagedQueryResult(result, more);
 }

}

Let’s look at the details:

D Specifies ordering

E Specifies range

F Creates PagedQueryResult

446 CHAPTER 11

Implementing dynamic paged queries
The doInJdo() method creates the criteria query and calls a helper method to
add the search criteria, specify the ordering and range, and to create the
PagedQueryResult.

The addCriteria() method adds criteria to the query based on what search crite-
ria are specified in the OrderSearchCriteria object. One notable feature of this
method is that if the restaurant name is not one of the search criteria, then
addCriteria() adds a fetch join for Restaurant.

The addSortBy() method specifies how to sort the results.

The addRange() method specifies the range of rows to retrieve.

The makePagedQueryResult() method constructs the PagedQueryResult.

The Hibernate version of the repository contains some conditional logic, but it’s a
lot simpler than the JDO version because using criteria queries eliminates the
need to concatenate query fragments.

11.6 Using JDO and Hibernate native SQL queries

In an ideal world, we would use object queries for all database queries and rely on
the persistence framework to generate optimal SQL statements. But as you might
expect, in the real world this isn’t always possible and sometimes we must use SQL
queries that use vendor-specific features such as optimizer hints to achieve the
necessary performance. Both JDO and Hibernate support native SQL queries.
They give you complete control over the SQL while taking care of the potentially
tedious task of constructing Java objects. The only drawback is that neither Hiber-
nate nor JDO provides any support for dynamically generating SQL queries. Con-
sequently, you might want to consider using iBATIS if you are only going to display
the results of the query and do not need to manipulate the objects. Let’s look at
how to use JDO and Hibernate SQL queries.

11.6.1 Using JDO native SQL queries

A JDO native SQL query is executed using the JDO Query interface but is written in
SQL instead of JDOQL. It can return either persistent objects or DTOs. SQL que-
ries that return persistent objects are useful if the application needs to manipulate
the persistent objects. However, they are somewhat restrictive because the col-
umns of the result set must map to the fields of a single persistent class. A SQL
query cannot, for example, eagerly load related objects such as an order and its
restaurant, which makes it impossible to implement the View Orders query.

C

D

E

F

B

Using JDO and Hibernate native SQL queries 447
 A SQL query that returns DTOs is also known as a SQL projection query and, if
you do not need to load the actual objects, provides more flexibility. The columns
of the result set are mapped to the JavaBean-style properties of the result class
instead of the fields of a persistent class and can come from multiple tables and
denormalized columns. You can, for example, use a SQL projection query to load
fields from multiple related objects.

 Listing 11.4 shows an example of a SQL projection query that retrieves orders
and their restaurants using a SQL SELECT statement that has a FIRST_ROWS opti-
mizer hint. It returns a collection of OrderSummaryDTO objects that contain the
order’s ID, delivery time, email, and phone number, and the restaurant’s name.

public class JDOOrderRepositoryImpl extends
 JdoDaoSupport implements OrderRepository {
…
 public List findOrdersUsingSQL() {
 return (List) getJdoTemplate().executeFind(
 new SQLCallback());
 }

 private final class SQLCallback implements
 JdoCallback {

 public Object doInJdo(PersistenceManager pm)
 throws JDOException {
 String sqlQuery = "SELECT /*+ FIRST_ROWS(20) */ "
 + " o.order_id as orderId, "
 + " o.delivery_time as deliveryTime, "
 + " o.payment_email as email, "
 + " o.payment_phone as phoneNumber, "
 + " r.name as restaurantName "
 + " from FTGO_ORDER o, FTGO_RESTAURANT r "
 + " where o.restaurant_id = r.restaurant_id";
 Query query = pm.newQuery(
 "javax.jdo.query.SQL", sqlQuery);
 ((KodoQuery) query)
 .setResultClass(OrderSummaryDTO.class);
 bbList result = (List) query.execute();
 return result;
 }

 }
…
}

Listing 11.4 An example of a JDO SQL projection query

Creates SQL query

Specifies return type

Executes
query

448 CHAPTER 11

Implementing dynamic paged queries
The call to Query.setResultClass() specifies that execute() should return the
results of the query as a list of OrderSummaryDTO objects. For each row in the result
set returned by the query, Kodo JDO instantiates an OrderSummaryDTO and calls its
setters.

 SQL projection queries enable you to optimize query performance by using
database-specific SQL features. There are, however, a number of drawbacks:

■ It hardwires knowledge of the database and the schema into the applica-
tion, which makes porting and maintaining the application more difficult.

■ Unless the SQL SELECT statement uses ROWNUM-like features, you have to rely
on the JDO implementation to process the result set lazily.

■ You have to write code to generate the SQL SELECT statement.

Consequently, if you need to use a SQL query but don’t need it to return persis-
tent objects, you should consider using iBATIS mapped statements instead. The
iBATIS framework makes it easy to generate SQL SELECT statements, and you have
control over how it processes the result set.

11.6.2 Using Hibernate SQL queries

A Hibernate application creates a SQL query by calling Session.cre-

ateSQLQuery(), which takes a SQL SELECT statement as an argument, or by calling
Session.getNamedQuery(), which takes the name of a SQL query as an argument.
Here is a code fragment that executes a SQL SELECT statement to retrieve the
orders whose delivery city is Oakland and their associated restaurants:

public class HibernateOrderRepositoryImpl extends
 HibernateDaoSupport implements OrderRepository {

…
 List findOrdersUsingSQLAndList() {
 List orders = (List) getHibernateTemplate()
 .execute(new SqlUsingListCallback());
 return orders;
 }

 private final class SqlUsingListCallback implements
 HibernateCallback {

 bbpublic Object doInHibernate(Session session)
 bbthrows HibernateException,
 bbSQLException {
 bbString sqlQuery = "SELECT {o.*},{r.*} "
 bb+ " FROM FTGO_ORDER o, FTGO_RESTAURANT r "
 bb+ " WHERE r.restaurant_id = o.restaurant_id "
 bb+ "AND o.delivery_city = :name "

Summary 449
 bb+ " ORDER BY DELIVERY_TIME desc";
 bbSQLQuery query = session
 bb.createSQLQuery(sqlQuery);
 bbquery.addEntity("o", Order.class);
 bbquery.addJoin("r", "o.restaurant");
 bbquery.setParameter("name", "Oakland");
 bbList results = query.list();
 bbreturn results;
 bb}
 }
…
}

Notice that the SELECT statement uses placeholders such as {o.*} for the column
names. Hibernate replaces them with the real column names when it executes the
SELECT statement. The call to SQLQuery.addEntity() tells Hibernate that the table
alias o refers to the Order class, and the call to SQLQuery.addJoin() tells Hibernate
that the table alias r refers to the order’s restaurant property. The list()
method returns a list of arrays. Each array consists of an Order and its Restaurant.
The restaurant is also accessible by calling Order.getRestaurant(). If your appli-
cation needs to navigate the result set, it can also execute Hibernate SQL queries
by calling scroll().

 SQL queries enable an application to execute SQL statements while staying
within the Hibernate framework. However, they have some drawbacks:

1 You must generate queries by concatenating SQL fragments, which are
messy and difficult to maintain.

2 Using SQL directly embeds some knowledge of the database and the
schema in the application code.

3 The query must retrieve all the properties of the objects, which might be
inefficient.

Therefore, although SQL queries are useful if you need to manipulate the persistent
objects, a better approach is to use iBATIS to generate and execute the queries. It
requires less code and gives you more control over how the result set is processed.

11.7 Summary

Designing and implementing a search screen that lets the user search for entities
that match certain search criteria is challenging. The application must implement
a paging mechanism in order to handle result sets that are too large to load entirely
into memory or display on a single page. It must generate queries dynamically,

450 CHAPTER 11

Implementing dynamic paged queries
which often requires code that is messy and difficult to maintain. In addition, you
often need to optimize SQL statements to achieve acceptable performance.

 One good solution to this problem is to use the iBATIS framework, which pro-
vides a mechanism for generating queries dynamically that requires only a few
lines of Java code. The iBATIS framework also keeps the intact SQL statement in
an XML file, which makes it easier to test and change. In addition, the framework
gives you control over how the result set is processed. You can either execute a
query that uses ROWNUM or you can choose rows from the result set. Overall, imple-
menting a DAO for a search screen using iBATIS is very straightforward except for,
of course, all the usual issues of maintaining handwritten SQL.

 Using JDO or Hibernate avoids the problems associated with using SQL
directly, but implementing some search screen queries efficiently can be difficult.
Although JDO and Hibernate provide optimizations such as eager loading, you
are not always able to get good performance because you cannot use database-spe-
cific SQL features such as optimizer hints. Another issue is that while Hibernate
and some JDO implementations such as Kodo JDO let you pick the most efficient
way to select a page from the result set, others might not. Furthermore, unless you
use Hibernate criteria queries you have to write messy query-generation code.

 JDO and Hibernate also support native SQL queries, which can use database-
specific features such as optimizer hints to improve performance. But, even when
using SQL queries, you still need to have control over the processing of the result
set. Moreover, both persistence frameworks lack support for generating SQL que-
ries, and so you have to write some potentially messy code. Sometimes, a better
approach is to use iBATIS to generate and execute the SQL queries.

 In the next chapter, you will learn how to handle database concurrency issues.

Database transactions
and concurrency
This chapter covers
■ Using optimistic and pessimistic locking
■ Handling concurrency in iBATIS, JDO and

Hibernate
■ Recovering from concurrency failures with

Spring
451

452 CHAPTER 12

Database transactions and concurrency
Many enterprise applications store data that is critical to the company and its cus-
tomers. Consider, for example, how your bank stores your money. Harry Potter’s
vault at Gringotts bank contains real gold galleons, but your money exists as fragile
1s and 0s in the bank’s database. There are many things that your bank must do to
safeguard that data, and one of the most important is maintaining the integrity of
that data when it is simultaneously updated by multiple database transactions.

 Enterprise applications almost always have multiple simultaneous users. Many
also have background tasks, which are triggered by schedulers or events received
from external systems. As a result, there are usually multiple transactions that are
simultaneously reading and updating the database. A major challenge faced by
enterprise application developers is that data can become inconsistent when it is
updated by multiple transactions simultaneously. Even though you might expect
the database to prevent this from happening, it is often the responsibility of the
application to maintain the consistency of the data.

 This is the first of two chapters that describe how an application can handle
concurrent updates. In this chapter you will learn about the basic concurrency
mechanisms you can use to handle concurrent updates within a database transac-
tion, which don’t involve user interactions. We describe three different concur-
rency mechanisms and how to use them in iBATIS/JDBC, JDO, and Hibernate
applications. In addition, you’ll learn how an application can recover from a data-
base concurrency failure. The next chapter shows you how to handle concurrent
updates in long-running business transactions, which consist of multiple database
transactions and usually involve user interactions.

12.1 Handling concurrent access to shared data

The outcome of executing multiple transactions simultaneously must be the same
as executing them serially, that is, one after the other, but in random order. Math-
ematically speaking, if there are N transactions, then there are factorial(N)
equally valid outcomes. This means, for example, that in the Food to Go applica-
tion there are two valid outcomes of executing the Send Orders to Restaurant and
Cancel Order use cases simultaneously. One outcome is that the order is sent to
the restaurant and not canceled (because it has already been sent). The other
outcome is that the order should be canceled and not sent to the restaurant.

 If neither the application nor the database ensures that the outcome of
executing multiple transactions simultaneously is the same as executing them
serially, then the database can become inconsistent and the application can
behave incorrectly. One common problem is lost updates, which occur when one

Handling concurrent access to shared data 453
transaction blindly overwrites another transaction’s changes. Both transactions
think they have updated the database even though one transaction’s changes have
been lost. A lost update in the Food to Go application could, for example, cause a
restaurant to prepare an unwanted order. If it were a bank, money could
disappear, which is something that couldn’t happen to the gold at Gringotts—at
least not without magic!

 Another common problem are inconsistent reads, which occur when the data
being read by one transaction is updated by another transaction. The transaction
that is reading the data sees different values at different times, which can result in
incorrect behavior. This can potentially happen any time an application queries
the same data more than once. It can also happen when a transaction uses multi-
ple queries to load related data, such as an order and its line items. In between
two queries another transaction could change the data. For more information
about lost updates and inconsistent reads, as well as some more subtle problems,
see Transaction Processing: Concepts and Techniques [Gray 1993].

 There are three main ways to handle concurrent accesses to shared data. Let’s
look at each one in turn.

12.1.1 Using fully isolated transactions

One solution is to use transactions that are fully isolated from one another, which
in database-speak are transactions with an isolation level of serializable. The data-
base ensures that the outcome of executing multiple serializable transactions is
the same as executing them serially. Serializable transactions prevent such prob-
lems as lost updates and inconsistent reads. For more information about serializ-
able transactions and the nuances of how they are supported by different
databases, see [Gray 1993] or the documentation for your database.

 As you will see later, using serializable transactions is very straightforward. You
configure Spring, JDO, or Hibernate, or the JDBC DataSource, to use the serializ-
able isolation level. The database tries to execute the transactions serially, and if it
cannot because of a problem (such as a deadlock), it will return an error code.
The application can then roll back and retry the failed transaction.

 Serializable is only one of the transaction isolation levels provided by data-
bases. Some databases also provide a repeatable read isolation level, which, as the
name suggests, ensures that a transaction gets the same results each time it reads a
row. However, unlike serializable transactions, repeatable read transactions can
get inconsistent results when they execute a query because other transactions can
insert and delete rows, which are known as phantoms.

454 CHAPTER 12

Database transactions and concurrency
 The problem with using serialization and repeatable read isolation levels is
that they achieve isolation at the expense of system performance and scalability.
This is because the database handles concurrent access to shared data using
mechanisms such as locking, which reduces the amount of concurrency in the sys-
tem. As a result, many applications use a third isolation level called read commit-
ted to improve performance and scalability. Read committed provides even less
isolation than serializable or repeatable read because it does not prevent inconsis-
tent reads or lost updates. Applications make up for this lack of isolation by using
it in conjunction with either optimistic or pessimistic locking, which are described
later in this section.

Benefits and drawbacks
Fully isolated transactions have two main benefits:

■ They are simple to use.

■ They prevent many concurrency problems, including lost updates and
inconsistent reads.

The main drawback of fully isolated transactions is the high overhead, which can
reduce performance and scalability. Also, fully isolated transactions can fail more
frequently than less isolated transactions because of deadlocks and other concur-
rency-related issues.

When to use fully isolated transactions
An application should use fully isolated transactions when:

■ Read consistency is essential.

■ The overhead of fully isolated transactions is acceptable.

A typical application rarely needs to use fully isolated transactions. Instead, it
should use the read committed isolation level in conjunction with either optimis-
tic locking or pessimistic locking.

12.1.2 Optimistic locking

The trouble with fully isolated transactions is that they incur a significant over-
head regardless of whether concurrent updates actually occur. Concurrent
updates are usually quite rare, and so the mechanism that handles them should
ideally impose an overhead on the application only when one happens. A com-
monly used mechanism that works this way is optimistic locking. Despite its name,
optimistic locking doesn’t actually lock anything. Instead, when a transaction

Handling concurrent access to shared data 455
updates a row it verifies that the row has not been changed or deleted by a differ-
ent transaction since it was read. If it has, the transaction is typically rolled back
and retried. Performing the inexpensive check at update time prevents the other
transaction’s updates from being lost. Moreover, the overhead of redoing a trans-
action is only incurred when a concurrent update is detected.

 A JDBC/iBATIS application must implement the optimistic locking mechanism
itself. But, as you will see later, using optimistic locking in a JDO or Hibernate
application is simply a configuration issue. The application loads and updates
objects as usual, and JDO and Hibernate take care of all the bookkeeping
required to implement optimistic locking.

Tracking changes to data
There are three ways an application or a persistence framework can determine
whether a row has been changed since it was read. The first option is to track
changes using a version column, which is incremented whenever the application
updates a row. The transaction determines whether a row has changed by simply
comparing current value of the version column with the value that was originally
read from the database. This is usually the best approach since it is relatively sim-
ple for the application to check and update a version column.

 The second option is to use a timestamp column, which is updated whenever
the application updates a row. A transaction determines whether a row has
changed by comparing the current value of the timestamp column with the value
that was originally read from the database. This scheme is also quite simple to
implement, especially since tables often already have a timestamp column in
order to record when a user last updated a row. However, one problem with using
timestamps is that one transaction might overwrite another if the time interval
between the two updates is less than the granularity of the clock. Consequently, an
application should only use a timestamp column when working with a legacy
schema that already has one and it’s not possible to add a version column.

 The third option is to compare current values of the columns with their previ-
ously read values. The biggest advantage of using this approach is that it can work
with an existing legacy schema because it does not require the addition of either a
version or timestamp column. One drawback of this approach is that it makes the
SQL UPDATE statements more complex since, as we describe later, the WHERE clause
will contain a condition for every column. It must also handle null values cor-
rectly, which can be complicated. For example, I once discovered that one popu-
lar persistence framework could not compare blank strings correctly because in

456 CHAPTER 12

Database transactions and concurrency
Oracle, unlike Java, an empty string is considered to be null. We solved this prob-
lem by adding a version column to the table.

 Another drawback is that floating-point columns cannot be compared pre-
cisely and changes to them may not be detected. Because of these issues, an
application should only use this approach if it not possible to add a version or
timestamp column.

Efficiently implementing the optimistic locking check
A JDBC/iBATIS application or a persistence framework can efficiently implement
the optimistic locking check by incorporating it into the UPDATE statement that
updates the row. For example, here is an UPDATE statement that updates an order
and uses a version column to detect changes:

UPDATE PLACED_ORDER
SET VERSION = VERSION + 1,
 STATUS = 'SENT'
WHERE ORDER_ID = ? AND VERSION = ?

This UPDATE statement changes the state of the order and increments the version
number. Its WHERE clause checks that the version number is unchanged. If another
transaction changed or deleted the order, the UPDATE statement would not update
any rows and the JDBC PreparedStatement.executeUpdate() method, which exe-
cutes the UPDATE statement, would return a row count of zero. The application
could check this value and roll back the transaction when it is zero. UPDATE state-
ments that used timestamps or compared column values rows would be similar.

Using optimistic locking
Let’s look at how optimistic locking can be used to prevent lost updates when one
transaction attempts to send an order to a restaurant while another transaction tries
to cancel it. Keep in mind that all this applies to read committed or less isolation only.
In the scenario shown in figure 12.1, both transactions query the PLACED_ORDER
table using a SQL SELECT statement that retrieves the order’s version number. When
updating the order, they verify that the version number is unchanged.

 Transaction A reads the orders and saves the version numbers, and then trans-
action B does the same. Transaction A then updates an order using an UPDATE
statement that checks that the version number is unchanged and increments the
version number. When transaction B attempts to update the order, its UPDATE
statement fails because the VERSION column has changed and PreparedState-
ment.executeUpdate() will return zero. At this point transaction B can then do
one of two things. It could roll back and start again, or it could reread the

Handling concurrent access to shared data 457
changed row and redo just that part of the computation. In either case, it would
discover that the order had been sent and could not be canceled.

Benefits and drawbacks
Optimistic locking has a couple of advantages:

■ It is easy to implement in a JDBC/iBATIS application, and it is supported by
many persistence frameworks.

■ Optimistic locking, unlike pessimistic locking, does not prevent an applica-
tion from using certain SQL SELECT statement features. As you’ll see a bit
later, some databases have restrictions that prevent pessimistic locking from
working with some kinds of views and nested SELECT statements, etc.

There are, however, various drawbacks and issues:

■ All potentially conflicting transactions must use optimistic locking. Other-
wise, errors will occur. Fortunately, this isn’t an issue when using a persis-
tence framework because optimistic locking is specified declaratively on a
per-class basis, which ensures that it will be used consistently.

Transaction A-Send Orders

SELECT o.VERSION, …
FROM PLACED_ORDER o
WHERE ORDER_ID = x
(reads version = V1)

SELECT o.VERSION, …
FROM PLACED_ORDER o
WHERE ORDER_ID = x
(reads version = V1)

Transaction B-Cancel Order

UPDATE PLACED_ORDER
SET STATUS='SENT'
 VERSION = VERSION + 1,
WHERE ORDER_ID = x
 AND VERSION = V1

UPDATE PLACED_ORDER
SET STATUS='CANCELLED'
VERSION = VERSION + 1,
WHERE ORDER_ID = x
 AND VERSION = V1
(fails because VERSION = V1 + 1)

COMMIT

ROLLBACK

Time

Figure 12.1
An example of how optimistic
locking handles concurrent updates

458 CHAPTER 12

Database transactions and concurrency
■ The easiest way to implement optimistic locking is to use a version column.
But it is not always possible to add a version column to a legacy schema that
you have no control over. What’s more, you might not be able to modify the
legacy applications that also use the schema to increment the version column.

■ Optimistic locking does not guarantee that a transaction will be able to
update the rows that it read. If those rows have been changed by another
transaction, it will have to start over, which can be inefficient.

■ Optimistic locking does not prevent inconsistent reads. Fortunately, many
applications can tolerate some amount of inconsistency.

When to use it
Despite these drawbacks, optimistic locking is a useful concurrency mechanism. A
general recommendation is that an application should use optimistic locking
unless:

■ The database schema does not support optimistic locking. It’s a legacy
schema whose tables have columns that contain values such as floating-
point values that cannot be compared and you cannot add a version or
timestamp column.

■ The application must be guaranteed to be able to update the rows that it
read.

■ The application requires consistent reads.

12.1.3 Pessimistic locking

When optimistic locking won’t work, another way to handle concurrent updates is
by using pessimistic locking. As the name suggests, this mechanism assumes that
concurrent updates will occur and so incurs an overhead regardless of whether
they do. However, this overhead is much less than with fully isolated transactions.
A transaction that uses pessimistic locking locks the rows that it reads, which pre-
vents other transactions from reading and updating them. Other transactions will
block until the transaction releases those locks by either committing or rolling
back. Pessimistic locking prevents lost updates and provides some degree of read
consistency because it prevents the read rows from being changed by other trans-
actions. However, because pessimistic locking does not prevent new rows from
being inserted, re-executing the same query might return different results.

Handling concurrent access to shared data 459
How it works
The mechanism for acquiring locks is database specific and not all databases sup-
port it. In Oracle, an application uses pessimistic locking by executing a SELECT
FOR UPDATE statement, which locks the rows that it selects. The rows remain locked
until the transaction either commits or rolls back. Other transactions will be
blocked if they update or delete those rows or attempt to retrieve them using a
SELECT FOR UPDATE. Here is an example of an SELECT FOR UPDATE statement:

SELECT *
FROM PLACED_ORDER o, PLACED_ORDER_LINE_ITEM l
WHERE o.DELIVERY_TIME < SYSDATE
bbAND o.STATUS = 'PLACED'
bbAND o.ORDER_ID = l.ORDER_ID
FOR UPDATE

This SELECT FOR UPDATE statement retrieves and locks all orders whose state is
'PLACED' and whose delivery time is before a certain time.

 A transaction that executes a SELECT FOR UPDATE statement will be blocked if
another transaction has locked the rows. This will happen if the other transaction
has either updated or deleted those rows or locked them using a SELECT FOR
UPDATE. The transaction will be blocked until the other transaction commits or
rolls back. If a transaction doesn’t want to wait, it can use a SELECT FOR UPDATE NO
WAIT statement, which returns with an ORA-00054 error if it cannot lock the rows
immediately. Alternatively, it can wait for a specified period by using SELECT FOR
UPDATE WAIT <n seconds>.

Using pessimistic locking
Let’s look at how this application can use a SELECT FOR UPDATE statement to pre-
vent lost updates in the sendOrders/cancelOrder scenario. In the scenario shown
in figure 12.2, both transactions query the PLACED_ORDER table using a SELECT
FOR UPDATE. In this scenario, transaction A executes the SELECT FOR UPDATE state-
ment first, which locks the row. The SELECT FOR UPDATE executed by transaction B
will block until transaction A commits and releases the lock. At this point, transac-
tion B will discover that the order has been sent and cannot be canceled.

 A transaction can use pessimistic locking to provide some degree of read con-
sistency. Because rows that are read using SELECT FOR UPDATE are locked, they can-
not be changed or deleted by another transaction. If the transaction queries the
database again, those rows will be unchanged. However, because pessimistic lock-
ing does not prevent another transaction from inserting new rows, a query could
return additional rows.

460 CHAPTER 12

Database transactions and concurrency
Benefits and drawbacks
Pessimistic locking has several advantages:

■ Unlike optimistic locking, pessimistic locking does not require any schema
changes.

■ It prevents a transaction from overwriting another transaction’s changes. By
locking rows when they are read, a transaction can ensure that when it
updates them later it will not overwrite another transaction’s changes.

■ It can be used to maintain read consistency in scenarios where a transaction
reads from one table but updates another. A transaction can use SELECT FOR
UPDATE to ensure that rows that it reads but does not update are unchanged
when it commits.

■ It reduces the probability of deadlocks in databases that implement fully iso-
lated transactions by locking rows when they read.

But again, there are some drawbacks and issues as well:

■ All potentially conflicting transactions have to use SELECT FOR UPDATE in
order for pessimistic locking to work, which is potentially error-prone. For
example, in the sendOrders/cancelOrder scenario, if transaction B used a
regular SELECT statement it would not block and would end up overwriting
transaction A’s changes.

■ In databases such as Oracle where SELECT does not normally lock rows, the
increased use of locks reduces concurrency and the overhead of maintaining

Transaction A-Send Orders

SELECT ...
FROM PLACED_ORDER
WHERE …
FOR UPDATE

SELECT …
FROM PLACED_ORDER
WHERE …
FOR UPDATE

Transaction B-Cancel Order

UPDATE PLACED_ORDER
SET STATUS=’SENT’
WHERE …

COMMIT

Time

Figure 12.2
An example of how pessimistic
locking prevents concurrent updates

Handling concurrent access to shared data 461
many locks can reduce performance. The increased use of locks also
enhances the probability of deadlocks, which occur when two transactions
are waiting for locks held by the other. Oracle automatically detects dead-
locks and returns an ORA-00060 error to one of the participating transac-
tions, which can either roll back the entire transaction or retry the SQL
statement that caused the deadlock. Other databases will signal a deadlock in
a similar way.

■ Some databases have limitations on how SELECT FOR UPDATE can be used. For
example, with Oracle, it can only be used at the top level and cannot be
nested within another SQL statement. Also, there are certain SQL features
that cannot be used in conjunction with SELECT FOR UPDATE. These features
include DISTINCT, aggregate functions, and GROUP BY. It cannot be used on
certain types of views and nested SELECTs. This is a particularly important
limitation when an application uses a persistence framework since it has no
control over the generated SQL.

■ An application that accesses the database using a persistence framework can
only use pessimistic locking if the persistence framework supports it. An
application cannot implement pessimistic locking on top of a persistence
framework.

■ An application that uses pessimistic locking cannot use a process-level cache
because it must access the database in order to lock the rows.

Despite these limitations, pessimistic locking is extremely useful in many situations.

When to use it
Pessimistic locking should be used when:

■ The database schema does not support optimistic locking because, for
example, the tables do not have a version or timestamp column or contain
values such as floats or blobs that cannot be compared.

■ The application requires some degree of read consistency.

■ You don’t want to incur the overhead of serializable transactions.

12.1.4 Using a combination of locking mechanisms

The simplest approach is to use a single concurrency strategy throughout the
application, but sometimes you might need to use a combination of concurrency
strategies. You could, for example, use optimistic locking for all transactions
except those with special requirements. Transactions that access tables that do not
support optimistic locking can use pessimistic locking, and transactions that need

462 CHAPTER 12

Database transactions and concurrency
read consistency can use a serializable isolation level. To determine the right
approach, you need to examine the requirements of each use case.

 Now that we have gotten an overview of fully isolated transactions, pessimistic
locking, and optimistic locking, let’s look at how to use them to handle concur-
rent updates in an enterprise application.

12.2 Handling concurrent updates
in a JDBC/iBATIS application

The details of how an application uses each of the three concurrency mechanisms
described in the previous section depends on which database access mechanism it
uses. We will start by looking at how to use those concurrency options in an appli-
cation that executes SQL statements directly using either JDBC or iBATIS. This will
enable you to learn how the different concurrency mechanisms work at the SQL
level, which later sections will build on as they describe how JDO and Hibernate
applications use them.

 We’ll use the business logic for the Send Orders to Restaurant use case as an
example. First we provide an overview of a design for the business logic that is
based on the Transaction Script pattern and uses an iBATIS/JDBC-based DAO to
access the database. After that, you’ll learn the details of how each of the concur-
rency mechanisms is used.

12.2.1 Design overview

The Send Orders to Restaurant use case describes how orders are sent to a restau-
rant for preparation:

This use case is driven by a scheduler and has no UI. Figure 12.3 shows the trans-
action script version of the business logic for this use case. It consists of a transaction
script that finds the orders to send, sends them, and then changes each order’s sta-
tus to indicate that it was sent. It uses iBATIS to execute SQL statements that find and
update the orders and uses Spring to manage transactions and connections. The
transaction script is wrapped with a Spring TransactionInterceptor, which man-
ages transactions and a JDBC connection. This design works for serializable trans-
actions, optimistic locking, and pessimistic locking, with only minor changes to the

X minutes before the scheduled delivery time, the system sends (emails or
faxes) a placed order to the restaurant.

Handling concurrent updates in a JDBC/iBATIS application 463
SQL statements that are executed by the OrderDAO and the configuration of the
Spring TransactionInterceptor or JDBC DataSource.

 The key classes in the design are:

■ RestaurantNotificationTransactionScripts, which implements the transac-
tion script

■ Scheduler, which periodically invokes the RestaurantNotificationTransac-
tionScripts

Transaction Interceptor

sendOrders()

RestaurantNotification
TransactionScriptsImpl

void sendOrders()

<<interface>>
RestaurantNotification

TransactionScripts

findOrdersToSend()
markOrdersAsSent()

<<interface>>
OrderDAO

sendOrder()

<<interface>>
RestaurantNotification

Gateway

OrderDTO

Scheduler

findOrdersToSend()
markOrdersAsSent()

OrderDAOIBatisImpl

queryForList()
update()

SqlMapClient
Template

Order.xml

<sqlMap>

<select
 name="findOrdersToSend" ...>
SELECT ...
</select>

<update
name="markOrdersAsSent" ...>
UPDATE ...
</update>

...
</sqlMap>

Figure 12.3 Transaction script-based design for the Send Orders to Restaurant use case

464 CHAPTER 12

Database transactions and concurrency
■ RestaurantNotificationGateway, which encapsulates the mechanism for
sending orders to restaurants

■ OrderDAO, which encapsulates the database access code

■ OrderDAOIBatisImpl, which implements the OrderDAO interface using the
Spring SqlMapClientTemplate, a wrapper around the iBATIS classes

■ OrderDTO, which represents an order

■ TransactionInterceptor, which is the Spring AOP interceptor that manages
transactions and JDBC connections

RestaurantNotificationTransactionScripts defines the sendOrders() method,
which is the transaction script that sends the orders to the restaurant. This
method first calls the OrderDAO to find the orders to send. It then sends each order
using the RestaurantNotificationGateway. After sending the orders, it calls the
OrderDAO to mark the orders as having been sent.

 The OrderDAO defines a findOrdersToSend() method, which returns a list of
orders, and a markOrdersAsSent() method, which updates the orders to indicate
that they been sent. The OrderDAOIBatisImpl class uses a Spring SqlMapClientTem-
plate to execute the SQL statements that are defined in the iBATIS file Order.xml.

 Let’s now look at how this business logic can use each of the database concur-
rency mechanisms. In a real application, the business logic for a use case would
only use one concurrency mechanism—most likely optimistic locking—but it is
educational to compare the implementations of each one.

12.2.2 Using optimistic locking

The easiest way to implement optimistic locking is to add a version column to the
PLACED_ORDER table, which is incremented by the application each time it
updates a row:

CREATE TABLE PLACED_ORDER (
 …
 VERSION NUMBER(10) DEFAULT 0 NOT NULL,
 …
)

The version column along with the rest of the data from the PLACED_ORDER
table is retrieved by the SQL SELECT statement executed by the OrderDAO:

SELECT * … o.VERSION …
FROM PLACED_ORDER o, RESTAURANT r, PLACED_ORDER_LINE_ITEM l
WHERE
bbo.status = 'PLACED' AND DELIVERY_TIME < ?

Handling concurrent updates in a JDBC/iBATIS application 465
bbbAND
bbbbbr.restaurant_id = o.restaurant_id
bbbAND l.order_id = o.order_id
ORDER BY o.order_id ASC

This statement retrieves the order information from the PLACED_ORDER, RES-
TAURANT, and PLACED_ORDER_LINE_ITEM tables. The OrderDAO stores the ver-
sion in the OrderDTO, which is returned to the sendOrders() transaction script.

 The OrderDAO updates the Order using the following SQL statement:

UPDATE PLACED_ORDER
SET VERSION = VERSION + 1,
 STATUS = 'SENT', MESSAGE_ID = ?, SENT_TIME = ?
WHERE ORDER_ID = ? AND VERSION = ?

This UPDATE statement changes the state of a specific order to SENT and updates
the MESSAGE_ID, SENT_TIME, and VERSION columns only if the VERSION column is
unchanged since it was read.

 The markOrderAsSent() method, which executes the UPDATE statement, checks
the count of the rows updated and throws an exception if it is zero. It executes the
UPDATE statement by calling SqlMapClientTemplate.update():

public class OrderDAOIBatisImpl extends SqlMapClientDaoSupport
 implements OrderDAO {

 public OrderDAOIBatisImpl(
 SqlMapClientTemplate sqlMapClientTemplate) {
 setSqlMapClientTemplate(sqlMapClientTemplate);
 }

 void markOrdersAsSent(List orders, …) {

 …
 int rowCount = getSqlMapClientTemplate()
 .update("markOrderAsSent", …);
 if (rowCount == 0)
 throw new OptimisticLockingFailureException();
 …
 }
…

If the rowCount is zero, this method throws an OptimisticLockingFailureExcep-
tion, which is a Spring framework data access exception that is described in more
detail in section 12.2.5. In section 12.4, we describe how the application can catch
this exception and retry the transaction.

466 CHAPTER 12

Database transactions and concurrency
12.2.3 Using pessimistic locking

If you are unable to add a version column to the PLACED_ORDER table, you could
use pessimistic locking to handle concurrent updates. When using pessimistic
locking, the OrderDAO locks the rows in PLACED_ORDER when it retrieves the
orders. It does this using this SQL SELECT FOR UPDATE statement:

SELECT *
FROM PLACED_ORDER o, RESTAURANT r, PLACED_ORDER_LINE_ITEM l
WHERE
bborder.order_status = 'PLACED' AND DELIVERY_TIME < ? AND
bbr.restaurant_id = o.restaurant_id
bband l.order_id = o.order_id
ORDER BY o.order_id ASC
FOR UPDATE OF o.ORDER_ID

The FOR UPDATE OF o.ORDER_ID clause tells Oracle to lock the rows in just the
PLACED_ORDER table, which is more efficient than locking the rows in all three of
the tables. The SELECT FOR UPDATE statement will block if the rows in the
PLACED_ORDER table are locked by another transaction. In section 12.2.5, we will
look at signaling pessimistic locking failures.

 The UPDATE statement is a vanilla update statement:

UPDATE PLACED_ORDER
SET STATUS = 'SENT', MESSAGE_ID = ?, SENT_TIME = ?
WHERE ORDER_ID = ?

It simply updates the PLACED_ORDER table.

12.2.4 Using serializable or repeatable read transactions

Another alternative to pessimistic locking that also leaves the database schema
unchanged is to use serializable or repeatable read transactions. When using
these isolation levels, the OrderDAO would access the PLACED_ORDER table using
the following vanilla SQL statements:

SELECT *
FROM PLACED_ORDER o, RESTAURANT r, PLACED_ORDER_LINE_ITEM l
WHERE
bborder.order_status = 'PLACED' AND DELIVERY_TIME < ? AND
bbr.restaurant_id = o.restaurant_id
bband l.order_id = o.order_id
ORDER BY o.order_id ASC

UPDATE PLACED_ORDER
SET STATUS = 'SENT', MESSAGE_ID = ?, SENT_TIME = ?
WHERE ORDER_ID = ?

Handling concurrent updates in a JDBC/iBATIS application 467
Because concurrent updates are handled by the database’s serializable transaction
mechanism, neither statement locks rows or maintains a version number. Instead,
you must configure either the Spring TransactionInterceptor, which provides
transaction management for the transaction script, or the JDBC DataSource, which
creates JDBC connections.

Configuring the TransactionInterceptor
Here is an example of how to configure a TransactionInterceptor Spring bean to
use serializable transactions:

<bean id="DataSourceTransactionInterceptor"
 class="org.springframework…TransactionInterceptor">
 <property name="transactionManager">
 <ref bean="DataSourceTransactionManager"/>
 </property>
 <property name="transactionAttributeSource">
 <ref bean="MatchAllMethods"/>
 </property>
</bean>

<bean id="MatchAllMethods"
 class="org.springframework…MatchAlwaysTransactionAttributeSource">
 <property name="transactionAttribute">
 <value>PROPAGATION_REQUIRED,ISOLATION_SERIALIZABLE</value>
 </property>
</bean>

The DataSourceTransactionInterceptor would be applied to the RestaurantNo-
tificationTransactionScripts class using a BeanNameProxyCreator Spring bean,
whose definition is not shown. These bean definitions specify that when any
method of the RestaurantNotificationTransactionScripts is invoked, the
TransactionInterceptor will execute that method in a serializable transaction.

Configuring a DataSource
Configuring a transaction interceptor to use a particular isolation level is a flexible
solution that enables different methods to use different isolation levels. The other
option is to set the isolation level for DataSource, which will cause all transactions
that use that DataSource to use that isolation level. The details of how to configure
a DataSource to use a particular isolation level are implementation specific. Here is
an example of how to configure a Database Connection Pool (DBCP) DataSource
Spring bean to use serializable transactions:

<beans>

 <bean id="DataSource"
 lazy-init="true"

468 CHAPTER 12

Database transactions and concurrency
 class="org.apache.commons.dbcp.BasicDataSource">
 <property name="driverClassName">
 <value>oracle.jdbc.driver.OracleDriver</value>
 </property>
 <property name="defaultTransactionIsolation">
 <value>SERIALIZABLE</value>
 </property>
…

This bean’s definition uses the defaultTransactionIsolation property to specify
that all connections created by this DataSource should use the serializable isolation
level. Other DataSource implementations typically have an equivalent mechanism.

 A DAO that uses serializable transactions, optimistic locking, and pessimistic
locking will naturally encounter concurrency failures, which can occur when two
transactions try to access the same data simultaneously. It must report the failure
by throwing an exception. Let’s see how to do this.

12.2.5 Signaling concurrent update failures

A concurrency failure occurs when either the DAO or the database determines
that two transactions cannot be executed concurrently. If the application is using
optimistic locking, the DAO will be unable to update a row because it has been
updated or deleted by another transaction. Or, if the application is using serializ-
able transactions or pessimistic locking, the database will detect a deadlock or
some other condition and JDBC throws a SQLException. A DAO must report a con-
currency failure by throwing an exception so that a higher level application com-
ponent can recover from the error by rolling back or retrying the transaction or
by displaying an error message to the user.

 A DAO could, for example, allow the JDBC SQLException to propagate to its
caller, but there are two reasons why this is not a good idea. The first problem with
throwing a SQLException is that it is JDBC-specific. An application might also be
using a persistence framework such as JDO, which throws different exceptions.
Ideally, the higher level components of the application should not know how the
lower levels access the database. Another problem with SQLException is that it is a
checked exception, which would require the callers of the DAO to either catch it
or declare it as being thrown, which just clutters up the code. It is much better to
use unchecked exceptions to report a concurrency failure.

 Spring provides a very elegant solution to this problem. It has an unchecked
exception class hierarchy for data access errors that enables an application to treat
data access errors uniformly regardless of whether it is using JDBC, Hibernate, or
JDO. It also has an extensible mechanism for automatically translating exceptions

Handling concurrent updates in a JDBC/iBATIS application 469
thrown by JDBC, Hibernate, and JDO to database access exceptions. In the next sec-
tion, we’ll see how it can be used to signal concurrent update failures.

Using Spring data access exceptions
The root of the Spring data access exception class hierarchy, part of which is
shown in figure 12.4, is DataAccessException, which is a RuntimeException. There
are many subclasses of DataAccessException, including ConcurrencyFailure-
Exception, which is the superclass of exceptions that are thrown when a concur-
rency error occurs.
Its subclasses include:

■ OptimisticLockingFailureException, which is thrown when an optimistic
locking failure occurs

■ PessimisticLockingFailure, which is thrown when a pessimistic locking
failure occurs

■ CannotAcquireLockException, which is thrown when a lock could not be
acquired

■ CannotSerializeTransactionException, which is thrown when a transaction
could not be serialized

DataAccess
Exception

Concurrency
Failure

Exception
...

Optimistic
LockingFailure

Exception

CannotAcquire
LockException

CannotSerialize
Transaction
Exception

Pessimistic
LockingFailure

Exception

Figure 12.4
Part of the Spring data access
exception class hierarchy

470 CHAPTER 12

Database transactions and concurrency
A DAO that implements optimistic locking must explicitly throw an Optimistic-
LockingFailureException when it fails to update a row. However, Spring’s JDBC
and iBATIS classes automatically map SQLExceptions to Spring data access excep-
tions. This means, for example, that if you use a SqlMapClientTemplate to execute
a SQL statement that results in an error, Spring will map the SQLException to the
appropriate subclass of DataAccessException.

 One minor issue with Spring’s SQLException mapping mechanism is that it
does not recognize all error codes. For example, in the case of Oracle, Spring will
map an ORA-00054 error code, which indicates that a row cannot be locked imme-
diately, to a CannotAcquireLockException, but it does not recognize ORA-00060
and ORA-08177 error codes, which indicate other concurrency failures, and maps
them to an UncategorizedSQLException. This is a shame because, as I mentioned
earlier, an ORA-00060 error code indicates a deadlock and an ORA-08177 error
indicates a serialization failure. In order to map those error codes to the appropri-
ate subclass of ConcurrencyFailureException, we must use extend the Spring
SQLException mapping mechanism.

Extending Spring’s SQLException mapping mechanism
Data access template classes such as SqlMapClientTemplate use a SQLException-
Translator to map SQLExceptions to Spring data access exceptions. As figure 12.5
shows,this interface defines a translate() method that takes a SQLException as a

SqlMapClient
Template

DataAccessException translate(... ,SQLException)

<< interface>>
SQLExceptionTranslator

SQLErrorCode
SQLException

Translator

DataAccessException customTranslate(... ,SQLException)

MyOracleSQLExceptionTranslator

OrderDAO

Figure 12.5 Extending the Spring SQLException mapping mechanism

Handling concurrent updates in a JDBC/iBATIS application 471
parameter and returns a DataAccessException.By default, the data access tem-
plate classes typically use a SQLErrorCodeSQLExceptionTranslator. This class
implements the SQLExceptionTranslator interface and translates a limited num-
ber of Oracle error codes to data access exceptions. We can add support for addi-
tional error codes by subclassing SQLErrorCodeSQLExceptionTranslator and
overriding its customTranslate() method:

public class MyOracleSQLExceptionTranslator extends
 SQLErrorCodeSQLExceptionTranslator {

 protected DataAccessException customTranslate(String task,
 String sql, SQLException sqlex) {
 switch (sqlex.getErrorCode()) {
 case 8177:
 return new CannotSerializeTransactionException(
 "Can't serialize", sqlex);
 case 60:
 return new CannotAcquireLockException(
 "Deadlock", sqlex);
 default:
 return null;
 }
 }
}

This class maps ORA-00060 to CannotAcquireLockException and ORA-08177 to
CannotSerializeTransactionException. You would write a similar class for a dif-
ferent database.

 Once we have written this class, we must configure the JdbcTemplate or SqlMap-
ClientTemplate objects, which are used by the application to access the database,
to use it. For example, a SqlMapClientTemplate is configured as follows:

<beans>
…
 <bean id="SqlMapClientTemplate"
 class="org.springframework.orm.iBatis.SqlMapClientTemplate"
 autowire="constructor">
 <property name="exceptionTranslator"
 ref ="ExceptionTranslator"/>
 </bean>

 <bean id="ExceptionTranslator"
 class="net.chrisrichardson.foodToGo.util.spring.
bbbbbbbbb➥ MyOracleSQLExceptionTranslator">
 <property name="dataSource" ref="DataSource"/>
 </bean>
…
</beans>

472 CHAPTER 12

Database transactions and concurrency
In this example, the SqlMapClientTemplate is configured to use a MyOracleSQL-
ExceptionTranslator, which is configured with the DataSource. The DataSource is
used by the SQLErrorCodeSQLExceptionTranslator to identify the database and
select the default SQLException mapping. Once this is done, any ORA-00060 and
ORA-08177 errors that are encountered by the SqlMapClientTemplate will be
mapped to the appropriate concurrency exception.

12.3 Handling concurrent updates
with JDO and Hibernate

As you might expect, handling concurrent updates in a Hibernate or JDO applica-
tion is a lot easier than in an iBATIS/JDBC application. For the most part, you sim-
ply configure Hibernate or JDO to use a particular concurrency mechanism and it
takes care of the rest. With optimistic and pessimistic locking, JDO and Hibernate
automatically generate the required SQL statements. And serializable or repeat-
able read transactions work the same way in Hibernate and JDO applications as
they do in iBATIS/JDBC applications.

 Hibernate and JDO implement optimistic locking for objects using the same
change-tracking mechanisms we described earlier. If the update fails because the
version number, timestamp, or column values are different, JDO and Hibernate
throw an exception. JDO and Hibernate implement pessimistic locking for objects
by loading an object with a SELECT FOR UPDATE statement that locks the corre-
sponding row. In this chapter, it is important to remember that object locking
means locking the corresponding database table row or rows.

 First we’ll examine a domain model-based example that will be used to illus-
trate how to handle concurrent updates in a JDO or Hibernate application. After
that, we’ll delve into the details of configuring the JDO and Hibernate to use each
concurrency mechanism.

12.3.1 Example domain model design

Using a particular concurrency mechanism in a JDO or Hibernate application is
mostly a matter of configuration and requires little or no coding. But it always
helps to use an example to make things concrete. Figure 12.6 shows the domain
model version of the business logic for the Send Orders to Restaurant use case. It
uses JDO or Hibernate to retrieve and update the orders that are ready to be sent
to the restaurant.

 The key classes are as follows:

Handling concurrent updates with JDO and Hibernate 473
■ Scheduler, which periodically calls DomainRestaurantNotificationService

■ DomainRestaurantNotificationService, the domain model-based imple-
mentation of the RestaurantNotificationService

■ TransactionInterceptor, the Spring AOP interceptor that manages transac-
tions and the Hibernate Session or JDO PersistenceManager

■ Order, which represents an order and defines a noteSent() method that
updates the order with the notification details

■ RestaurantNotificationGateway, which sends the order to the restaurant

■ NotificationDetails, which contains a messageId and timeSent

■ OrderRepository, which uses the JDO or Hibernate query APIs to find the
orders that are waiting to be sent to the restaurants.

TransactionInterceptor

sendOrders()

Domain
RestaurantNotification

Service

List findOrdersToSend()

<<interface>>
OrderRepository

sendOrder(Order)

<<interface>>
RestaurantGateway

void sendOrders()

<<interface>>
RestaurantNotification

Service

noteSent(messageId, timeSent)

Order
JDO

OrderRepository

javax.jdo

Scheduler

Hibernate
OrderRepository

org.hibernate

Figure 12.6 Domain model version of the business logic for the Send Orders to Restaurant use case

474 CHAPTER 12

Database transactions and concurrency
DomainRestaurantNotificationService calls the OrderRepository to retrieve the
orders that are ready to be sent. It then sends each one using the RestaurantNoti-
ficationGateway. Finally, DomainRestaurantNotificationService marks each
order as having been sent by calling Order.noteSent().

 This design works for both Hibernate and JDO. The only thing that needs to be
changed is the OrderRepository class and persistence framework-specific files,
such as the O/R mapping. Let’s look at the concurrency options provided by JDO
and how to configure them.

12.3.2 Handling concurrent updates with JDO

JDO supports optimistic locking, pessimistic locking, and serializable transactions.
A JDO application uses pessimistic or optimistic locking by specifying the type of
the JDO transaction. Let’s first explore how this is done and then see how to con-
figure serializable transactions.

Configuring the JDO transaction type
JDO defines two types of transactions: optimistic transactions, which use the opti-
mistic locking, and datastore transactions, which use pessimistic locking or fully iso-
lated transactions. The most common way to specify the JDO transaction type is by
configuring the JDO PersistenceManagerFactory. The PersistenceManagerFac-
tory has a property called javax.jdo.option.Optimistic, which specifies whether
to use optimistic or datastore transactions. A value of true specifies that any Per-
sistenceManagers created by the PersistenceManagerFactory should use optimistic
transactions. A value of false specifies that they should use datastore transactions.

 There are also a couple of other rarely used ways to programmatically specify
the JDO transaction type. You can call PersistenceManagerFactory.setOptimis-
tic(), which is equivalent to using the javax.jdo.option.Optimistic property.
You can also specify the transaction type by calling Transaction.setOptimistic(),
which specifies the type of the transactions used by that Transaction object. How-
ever, for most applications, configuring the PersistenceManagerFactory declara-
tively is the easiest approach.

 A Spring application sets this property by configuring the Spring bean that cre-
ates the PersistenceManagerFactory. For example, you can enable optimistic
transactions in a Spring application by using the following bean definition:

<bean id="myPersistenceManagerFactory"
 lazy-init="true"
 class="org.springframework.orm.jdo.
bbbbbbbb➥ LocalPersistenceManagerFactoryBean">
 <property name="configLocation">

Handling concurrent updates with JDO and Hibernate 475
 <value>classpath:/kodo.properties</value>
 </property>
 <property name="jdoProperties">
 <props>
 <prop key="javax.jdo.option.Optimistic">true</prop>
 </props>
 </property>
</bean>

The LocalPersistenceManagerFactoryBean creates the PersistenceManagerFac-
tory that injected into the JdoTemplate used by repositories such as JDOOrderRe-
positoryImpl. This bean definition sets the value of javax.jdo.option.Optimistic
to true.

 Using a mixture of optimistic and pessimistic transactions in a JDO application
is difficult. Using a separate PersistenceManagerFactory for each type of transac-
tion is often impractical because you would have to define multiple instances of
each Spring bean that depends directly or indirectly on the PersistenceManager-
Factory. In addition, Spring 1.1.4 does not support declaratively specifying the
transaction type. To specify the JDO transaction type on a per-transaction basis, an
application would have to use a custom AOP interceptor that calls Transac-
tion.setOptimistic().

 Let’s see how JDO optimistic transactions and pessimistic transactions work.

Using optimistic transactions
A JDO optimistic transaction uses optimistic locking to handle concurrent
updates. When an application commits an optimistic transaction, the JDO imple-
mentation verifies that all modified objects are unchanged in the database using
one of the three change-tracking mechanisms we described earlier. If any have
changed or been deleted, the JDO implementation will roll back the transaction
and throw a JDOOptimisticVerificationFailedException, which is mapped by
Spring’s JdoTemplate to OptimisticLockingFailureException.

 JDO 1.0 left the details of the optimistic locking mechanism up to the JDO ven-
dor. However, JDO 1.x implementations such as Versant Open Access JDO (for-
merly known as JDO Genie) and Kodo JDO implement optimistic locking using all
three change-tracking mechanisms. This is an example of how to configure the
Order class in Kodo JDO 3.0.2 to use a version column:

<jdo>
 <package name="net.chrisrichardson.foodToGo.domain">
 <class name="Order" identity-type="datastore">
 <extension vendor-name="kodo" key="table"
 value="PLACED_ORDER" />
 <extension vendor-name="kodo"
 key="jdbc-version-ind"

476 CHAPTER 12

Database transactions and concurrency
 value="version-number">
 <extension vendor-name="kodo"
 key="column" value="VERSION"/>
 </extension>
…

The XML metadata specifies that the Order class be mapped to the PLACED_ORDER
table and that the optimistic locking check use the VERSION column.

 The JDO 2.0 specification, which defines an O/R mapping, requires a JDO
implementation to support these three change-tracking mechanisms. This is how
you would configure the Order class to use a version number in JDO 2.0:

<class name="Order"
 table="PLACED_ORDER"
 detachable="true"
 identity-type="application">

 <version strategy="version-number" column="VERSION"/>
…
</class>

The <version> element specifies that the Order class should maintain the version
number in the VERSION column. You could also use a value of strategy="time-
stamp" to implement optimistic locking using a timestamp and strategy="state-
image" to compare all columns. Note that unlike Hibernate, the timestamp or ver-
sion number might not be stored in a field. This usually isn’t important except
when implementing the Optimistic Offline Lock pattern, which is described in
the next chapter.

 Once the PersistenceManagerFactory and the classes have been configured
correctly, the JDO implementation will generate the SQL statements that imple-
ment optimistic locking. A typical JDO implementation will even perform optimis-
tic lock checks for those classes during a datastore transaction.

Using datastore transactions
Whereas a JDO optimistic transaction uses optimistic locking, a JDO datastore
transaction uses either the transaction isolation level or pessimistic locking to han-
dle concurrent updates. No class-level configuration is necessary in order to use
datastore transactions. However, the details of how datastore transactions are
implemented depends on the JDO implementation and the database. For
instance, Versant Open Access JDO and Kodo JDO implement datastore transac-
tions on Oracle by querying the database using SELECT FOR UPDATE statements,
which lock the rows. With JPOX 1.1, the default is to rely on the isolation level to
lock the rows, and you must set a flag in order to use pessimistic locking.

Handling concurrent updates with JDO and Hibernate 477
 Although this sounds straightforward, there are several issues with JDO data-
store transactions. First, JDO datastore transactions potentially lock every row that
is retrieved from a set of tables, which can sometimes impact the performance
and increase the probability of deadlocks. It can also be unnecessary because
many applications only need to lock rows in specific tables. Fortunately, some JDO
implementations let the application control which objects are locked. For exam-
ple, you can configure Versant Open Access JDO to only lock the first object
loaded during a transaction, which is sufficient for some transactions.

 Second, in order to lock the rows in the database, the JDO implementation
(and Hibernate for that matter) must ignore the process-level cache and access
the database. In some applications this can reduce performance significantly.

 The third issue to consider is that the JDO implementation can translate a
JDOQL query into a SQL statement that uses constructs that are incompatible with
a FOR UPDATE clause. If this happens, you will need to change the query or use a dif-
ferent concurrency mechanism.

 Optimistic and pessimistic locking are two of the concurrency mechanisms
that a JDO application can use. Isolated database transactions are the third mech-
anism. Let’s explore how to configure the transaction isolation level.

Using serializable or repeatable read transactions
Some JDO implementations provide extensions to the JDO specification for con-
trolling the isolation level of datastore transactions. Examples of the different
ways of specifying the transaction isolation level include:

■ Setting a PersistenceManagerFactory property

■ Configuring the isolation level of the DataSource that is used by the Persis-
tenceManagerFactory, as was shown in section 12.2.4

■ Using the TransactionInterceptor to specify the isolation level, as was
shown in section 12.2.4

Unfortunately, these extensions are specific to the JDO implementation used by
your application. You can check your implementation’s documentation for more
information.

Signaling concurrent update failures
A JDO implementation signals errors by throwing an exception that is an instance
of one of the subclasses of JDOException. JDOException, which is a subclass of
RuntimeException, has many subclasses, including those shown in figure 12.7.

478 CHAPTER 12

Database transactions and concurrency
When an optimistic locking failure occurs, the JDO implementations throws a
JDOOptimisticVerificationException. The JDO specification does not describe
which subclass of JDOException the JDO implementation will throw to signal pessi-
mistic locking and serializable transaction failures. However, it’s possible that the
JDOException will contain the underlying SQLException, which can be accessed by
calling JDOException.getCause(). For more information about how errors are
reported, consult your JDO implementation’s documentation.

 The JdoTemplate maps the JDOOptimisticVerificationException to a Spring
OptimisticLockingFailureException. In addition, if the JDOException contains a
SQLException, the JdoTemplate will convert it to a data access exception using the
exception mapping mechanism we saw in section 12.2.5. We can even plug in our
own custom SQLExceptionTranslator. As a result, it’s possible that the JdoTem-
plate will report pessimistic locking and serializable transaction errors correctly.
Except for this relatively minor issue and potential problem with using optimistic
locking and pessimistic locking in the same application, it is relatively easy to use
all three concurrency mechanisms in a JDO application. Next we’ll examine how
to use optimistic locking, pessimistic locking, and serializable transactions in a
Hibernate application.

12.3.3 Handling concurrent updates with Hibernate

Hibernate, like JDO, also supports optimistic locking, pessimistic locking, and seri-
alizable transactions. In this section, we use the business logic for the Send Orders

Throwable getCause()

JDOException

JDOFatalException

JDOFatalDataStore
Exception

JDOOptimistic
VerificationException

...

Figure 12.7
Part of the JDOException class hierarchy

Handling concurrent updates with JDO and Hibernate 479
to Restaurant use case to illustrate how to use them. The Hibernate version of this
business logic is similar to the JDO version you saw in section 12.3.2. The only dif-
ference is that the OrderRepository uses Hibernate instead of JDO.

Using optimistic locking
Hibernate supports optimistic locking using a version or a timestamp column or
by comparing columns. The version or timestamp column and the corresponding
property are specified by using a <version> or <timestamp> element in a class’s
ORM document. For example, the following excerpt from the Order class’s map-
ping document configures the class to use a version column:

<hibernate-mapping>

<class
 name="net.chrisrichardson.foodToGo.domain.Order"
 table="PLACED_ORDER">
 <id name="id" column="ORDER_ID" unsaved-value="-1">
 <generator class="native"/>
 </id>
 <version name="version" column="VERSION"/>
…
</class>

This mapping document specifies that the Order class map to the PLACED_ORDER
table and use the VERSION column for optimistic locking. A class is configured to
use a timestamp in a similar way.

 An application can use the optimistic-lock attribute of the <class> element to
specify that Hibernate should implement the optimistic locking check by compar-
ing columns. Hibernate can either check all columns or just the changed columns.
Here is an example of how to configure Hibernate to check changed columns:

<class
 name="net.chrisrichardson.foodToGo.domain.Order"
 dynamic-update="true"
 optimistic-lock="dirty"
 table="PLACED_ORDER">
…
</class>

In order for Hibernate to compare columns, the application must also specify
dynamic-update="true", which tells Hibernate to generate SQL UPDATE statements
that update only changed columns.

 Hibernate performs the optimistic locking check when it updates the database
to reflect the changes made to the objects, which happens when the application
executes a Hibernate query or calls Session.flush(), which updates the database

480 CHAPTER 12

Database transactions and concurrency
with the changes made to objects, before committing the transaction. If Hiber-
nate determines that a row has been updated by another transaction, it throws a
StaleObjectStateException, which is mapped by Spring’s HibernateTemplate to
OptimisticLockingFailureException. An application must handle this exception
by first rolling back the transaction and closing the Session. It can then open a
new Session and retry the transaction.

 Hibernate’s optimistic locking mechanism works quite well. Because it is a
declarative mechanism, Hibernate ensures that it is used consistently for all data-
base accesses.

Using pessimistic locking
Hibernate provides a programmatic mechanism for pessimistic locking. An appli-
cation can lock an object when loading it, and lock objects when executing a
query. It can also lock a previously loaded object. An application locks the table
rows corresponding to objects by specifying a lock mode when calling the follow-
ing Hibernate methods: Session.load(), Session.lock(), and Query.setLock-
Mode(). There are several kinds of lock mode, but the values that support
pessimistic locking are LockMode.UPGRADE and LockMode.UPGRADE_NO_WAIT.

 The Session.load() method, which loads an object, has an optional lockMode
parameter, which specifies whether to lock the object. When one of these values is
specified, load() behaves as follows: If the specified object is not loaded, load()
uses SELECT FOR UPDATE [NO WAIT] to retrieve the object. If the object is already
loaded with a less restrictive lock, load() calls Session.lock().

 The method Session.lock() is used to lock an already loaded object. When
the lock mode is either UPGRADE or UPGRADE_NO_WAIT, lock() does a version check
using SELECT FOR UPDATE [NO WAIT] and throws a StaleObjectStateException if
the object is out of date.

 The Query.setLockMode() method is used to specify whether a query should
lock the objects it retrieves. If the application specifies a lockMode of either
UPGRADE or UPGRADE_NO_WAIT, Hibernate uses a SELECT FOR UPDATE [NO WAIT]

query to lock the objects.
 Here is how the HibernateOrderRepositoryImpl can use pessimistic locking:

public class HibernateOrderRepositoryImpl
…
 public List findOrdersToSend () {
 return getHibernateTemplate().executeFind(
 new HibernateCallback() {

 public Object doInHibernate(Session session)

Handling concurrent updates with JDO and Hibernate 481
 throws HibernateException, SQLException {
 Query query = session.getNamedQuery("findOrdersToSend");
 query.setLockMode("waitingOrder", LockMode.UPGRADE);
 Calendar cutOffTime = Calendar.getInstance();
 cutOffTime.add(Calendar.MINUTE, -timeWindowInMinutes);
 query.setParameter("cutOffTime", cutOffTime.getTime());
 return query.list();
 }});
 }
 }

The call to Query.setLockMode() specifies that the orders identified by the wait-
ingOrder alias should be locked. When Hibernate executes this query, it will use a
SELECT FOR UPDATE that locks the rows in the PLACED_ORDER table.

 One drawback of how Hibernate implements pessimistic locking is that
because it is a programmatic API the developer is responsible for ensuring that it
is used consistently. In comparison, JDO’s approach of specifying the concurrency
mechanism using a PersistenceManagerFactory property is easier to use. Fortu-
nately, most of the loads and queries for a class are centralized in its repository,
which reduces the chances of forgetting to lock an object.

 Another drawback is that pessimistic locking can only be used when the appli-
cation loads objects by calling one of the methods described earlier. Unlike JDO,
Hibernate will not lock a row when the application navigates to object.

 The third drawback is that locking objects for only certain transactions is diffi-
cult because it must be done programmatically. Either a repository would have to
define locking and nonlocking versions of some methods, or its caller would have
to tell the repository when to use pessimistic locking

 Despite these drawbacks, Hibernate’s pessimistic locking mechanism is useful
for certain applications. A Hibernate application can also use serializable transac-
tions.

Using serializable or repeatable read transactions
There are three main ways to configure the transaction isolation level in a Hiber-
nate application:

■ Using the TransactionInterceptor to specify the isolation level on a per-
transaction basis, as shown in section 12.2.4

■ Configuring the DataSource, as shown in section 12.2.4

■ Setting the hibernate.connection.isolation SessionFactory property to a
value of 8 (JDBC Connection.SERIALIZABLE)

482 CHAPTER 12

Database transactions and concurrency
Using the TransactionInterceptor is the most flexible approach since it allows
you to specify the isolation level on a per-transaction basis, which is a common
requirement. The other two options are useful only if you want to use the serializ-
able isolation level for all transactions.

Signaling concurrent update failures
When Hibernate detects a concurrency failure, it throws one of the subclasses of
HibernateException that are shown in figure 12.8. If it’s an optimistic locking fail-
ure, Hibernate throws a StaleObjectStateException, which extends StaleState-
Exception. Serializable and pessimistic locking failures cause JDBC to throw a
SQLException, which Hibernate maps to a subclass of JDBCException, which con-
tains the SQLException.

 The HibernateTemplate that calls the Hibernate API automatically maps the
HibernateExceptions to a Spring DataAccessException. It maps the StaleObject-
StateException to a Spring OptimisticLockingFailureException. A Hibernate-
Template maps a JDBCException to a DataAccessException by mapping the
SQLException that it contains using the same SQLExceptionTranslator-based mech-
anism used by Spring’s JDBC and iBATIS classes. Consequently, the application must
use the MyOracleSQLExceptionTranslator, which was described in section 12.2.5, to
map a SQLException to the corresponding data concurrency exception.

 In order to do this, you must configure the HibernateTemplate with a MyOra-
cleSQLExceptionTranslator by setting its jdbcExceptionTranslator property:

Hibernate
Exception

Stale
StateException

JDBCExceptionSQLException ...

StaleObject
StateException

...

Figure 12.8 Hibernate exceptions that are thrown when a concurrency failure occurs.

Recovering from data concurrency failures 483
<beans>
…
 <bean id="HibernateTemplate"
 class="org.springframework.orm.hibernate3.HibernateTemplate">
 <property name="sessionFactory">
 <ref bean="mySessionFactory"/>
 </property>
 <property name="jdbcExceptionTranslator">
 <ref bean="ExceptionTranslator"/>
 </property>
 </bean>
…
</beans>

ExceptionTranslator is the Spring bean that configures the MyOracleSQLExcep-
tionTranslator that we saw earlier. The HibernateTemplate will then map SQLEx-
ceptions using the MyOracleSQLExceptionTranslator. Concurrency errors that are
reported as JDBC exceptions will automatically be mapped to the appropriate sub-
class of ConcurrencyFailureException.

 Signaling a concurrency failure is just the first step in the process of handling
the error. Most of the time an application should attempt to recover from the fail-
ure by retrying the transaction; in the next section we’ll see how that works.

12.4 Recovering from data concurrency failures

I live a few miles from a major earthquake fault, and it’s inevitable that the big one
will eventually happen. The key to getting through such a disaster is having a seis-
mically retrofitted house along with a plan and supplies. On a much smaller scale,
it’s inevitable that concurrency failures will occur from time to time in an applica-
tion. The application must be prepared to handle them in a meaningful way. Ide-
ally, it should do more than simply display an error screen to the user.

 As we have seen, the database access layer of a Spring application reports a
concurrency failure by throwing a subclass of ConcurrencyFailureException.
Because ConcurrencyFailureException is an unchecked exception, in most appli-
cations it will propagate to the TransactionInterceptor, which wraps the business
logic and makes it transactional. By default, TransactionInterceptor handles an
unchecked exception by first making sure that the transaction is rolled back and
then rethrowing the exception. However, because data concurrency failures are
almost always transient, most applications should retry the transaction again
instead of propagating the exception to the presentation tier.

 We could place the burden of retrying transactions on the business logic’s cli-
ent. It would wrap each call to the business tier in a try/catch block and retry the

484 CHAPTER 12

Database transactions and concurrency
call if the exception was recoverable. The trouble with this approach is that it clut-
ters the client code with exception-handling logic. Every call that could poten-
tially throw a recoverable exception would be wrapped with the same code. A
much better approach is to centralize the retry logic in a Spring AOP interceptor
that retries transactions automatically. Let’s take a look.

12.4.1 Using an AOP interceptor to retry transactions

A Spring application can use a custom AOP interceptor to catch the Concurrency-
FailureException and automatically retry the transaction. Here is a custom
Spring AOP interceptor that does this:

public class TransactionRetryInterceptor
 implements MethodInterceptor {

 protected int maxRetryCount = 3;

 public void setMaxRetryCount(int maxRetryCount) {
 this.maxRetryCount = maxRetryCount;
 }

 public Object invoke(MethodInvocation invocation)
 throws Throwable {
 int retryCount = 0;
 while (true)
 try {
 ReflectiveMethodInvocation inv =
 (ReflectiveMethodInvocation) invocation;
 MethodInvocation anotherInvocation = inv.invocableClone();
 return anotherInvocation.proceed();
 } catch (ConcurrencyFailureException e) {
 if (retryCount++ > maxRetryCount)
 throw e;
 else {
 continue;
 }
 }
 }

}

This class has a maxRetryCount property whose default value is 3. The invoke()
method catches the ConcurrencyFailureException and loops at most maxRetry-
Count times, retrying the transaction. Because proceed() can only be called once,
invoke() clones the MethodInvocation before calling it. The TransactionRetry-
Interceptor is a good example of the power and flexibility of the Spring framework.

Recovering from data concurrency failures 485
The ability to define custom AOP interceptors can be extremely useful and elimi-
nates the need to write the code by hand or use a code generator.

12.4.2 Configuring the AOP interceptor

The TransactionRetryInterceptor must be configured to intercept calls to trans-
actional classes such as RestaurantNotificationService or RestaurantNotifica-
tionTransactionScripts. Furthermore, it must be applied to the POJO class
before the TransactionInterceptor so that it is not executed as part of the trans-
action. In this example, we configured a Spring BeanNameAutoProxyCreator to
wrap the RestaurantNotificationService with a TransactionRetryInterceptor
and then a TransactionInterceptor:

<beans>
…
<bean id="transactionProxyCreator"
 class="org.springframework.aop.framework.autoproxy.
bbbbbb➥ BeanNameAutoProxyCreator">
 <property name="beanNames">
 <idref name="DomainRestaurantNotificationService"/>
 </property>
 <property name="interceptorNames">

 bbbb<list>
 bbbb<idref name="TransactionRetryInterceptor"/>
 bbbb<idref name="TransactionInterceptor"/>
 bbbb</list>

 </property>
</bean>

<bean id="DomainRestaurantNotificationService"
 class="net.chrisrichardson.foodToGo.restaurantNotificationService.
bbbbbbb➥ impl.DomainRestaurantNotificationService">
…
</bean>

<bean id="TransactionRetryInterceptor"
 class="net.chrisrichardson.foodToGo.util.
bbbbbbb➥ TransactionRetryInterceptor">
 <property name="maxRetryCount"><value>5</value></property>
</bean>

<bean id="TransactionInterceptor"
 class="org.springframework.transaction.interceptor.
bbbbbbb➥ TransactionInterceptor">
…
</bean>

…
</beans>

486 CHAPTER 12

Database transactions and concurrency
These bean definitions ensure that any call to RestaurantNotificationService is
retried if a ConcurrencyFailureException is thrown. When the RestaurantNotifi-
cationService is invoked, the TransactionRetryInterceptor is called first, which
then calls the TransactionInterceptor to manage the transactions. The Transac-
tionInterceptor then calls the actual RestaurantNotificationService.

 It is important to remember that you can only retry a transaction if all the work
done inside the transaction can be undone and repeated. The transaction cannot
be automatically rolled back and retried if the application calls nontransactional
APIs such as a legacy system, or does things that can’t be undone, such as sending
email. Recovering from concurrency failures in these kinds of situations can be a
challenging problem, one that must be solved by application-level code. Fortu-
nately, rolling back and retrying a transaction isn’t a problem if the application
only updates the database or calls APIs such as JMS.

12.5 Summary

An application can handle concurrent updates to shared data in one of three
ways. One option is to use serializable transactions, which are transactions that are
completely isolated from one another. Alternatively, you can use pessimistic or
optimistic locking. An important benefit of serializable transactions is that each
transaction has a consistent view of the data and the database prevents one trans-
action from overwriting another’s changes. Also, they do not involve any extra
coding; you just have to configure Spring, the JDBC DataSource, or the persistence
framework. However, serializable transactions have a high overhead and thus per-
formance is lower. Furthermore, they are suited to short transactions that update
only a few rows.

 Because of the overhead of serializable transactions, many applications use a
read committed isolation level along with either pessimistic or optimistic locking.
A transaction that uses pessimistic locking locks rows when they are read. Other
transactions are prevented from updating those rows and, in some cases, from
reading them. A transaction that uses optimistic locking doesn’t lock the rows but
instead verifies that the rows it’s about to update are unchanged since they were
read. Optimistic locking can detect changes using a version or a timestamp col-
umn or by comparing columns.

 If you are using iBATIS or JDBC, then you must implement optimistic locking or
pessimistic locking yourself. In comparison, JDO and Hibernate have built-in sup-
port for optimistic locking and pessimistic locking and automatically generate the
required SQL statements. You enable optimistic locking for a class by configuring its

Summary 487
O/R mapping. In a JDO application, you use pessimistic locking by setting a Per-
sistenceManagerFactory property; in a Hibernate application, you use pessimistic
locking by calling a method when loading an object or executing a query.

 The Spring framework has some useful features for signaling and handling
concurrency failures. It defines a data access exception hierarchy that hides the
mechanism used to access a database. Spring’s data access classes automatically
map Hibernate, JDO, and JDBC exceptions to Spring data access exceptions,
which enables the application to treat them uniformly. An application can use a
custom Spring AOP interceptor to automatically retry a transaction that is rolled
back because of a database concurrency error.

 Handling concurrent updates within a single transaction is only one of the
database concurrency problems we need to solve. We must also handle concur-
rent updates across a sequence of database transactions. The next, and final,
chapter shows you how to do that.

Using offline
locking patterns
This chapter covers
■ Handling concurrency in edit-style use cases
■ Extending optimistic locking
■ Implementing application-level locks
488

The need for offline locking 489
Users invariably need to edit data that is stored by an enterprise application. For
example, let’s imagine that you are a Food to Go customer and, just after placing
an order for food from your favorite Indian restaurant, you realize that you need
to order more. You could phone in and have a customer service representative
change an order to add the extra Naan bread, some Tandoori Portobello Mush-
rooms, and some Ras Malai. But how would you feel if the system mysteriously lost
the changes to your order? Most likely, you would be very disappointed that you
didn’t get all the food you had ordered. What’s worse, you might even be discour-
aged from using Food to Go again. To keep their customers happy, Food to Go
must prevent this kind of concurrency problem when users edit data.

 Although some use cases, like the one we looked at in the previous chapter,
consist of a single database transaction, many others consist of a series of database
transactions and involve user input. For example, every enterprise application
that I have developed had screens that allow the user to edit data from the data-
base. Because the user could spend a few minutes editing the data, the opportu-
nity exists for concurrent updates. The application must handle the scenario
where two users attempt to edit the same data and prevent the same kinds of
inconsistencies and problems described in the previous chapter. The challenge is
how to handle concurrent access across a sequence of transactions.

 Neither serializable transactions nor pessimistic locking can work across a
sequence of transactions. Instead, you must either extend the optimistic locking
mechanism described in chapter 12 and check that data is unchanged before updat-
ing it, or implement an application-level locking mechanism to lock the data at the
start of the use case and prevent other users from updating. The first approach is
what Fowler calls the Optimistic Offline Lock pattern, and the second approach is
what he calls the Pessimistic Offline Lock pattern [Fowler 2002].

 In this chapter, we explain why you need to use the Optimistic Offline Lock
and Pessimistic Offline Lock patterns. You will learn about the benefits and draw-
backs of these two patterns and how to decide which one to use. We show you how
to implement these patterns in JDO and Hibernate applications using the
Acknowledge Order and Modify Order use cases as examples.

13.1 The need for offline locking

To understand why an application must use an offline locking pattern, let’s look at
an example of an edit-style use case, which is an extremely common kind of use
case in which the user edits persistent data. Such a use case begins with the appli-
cation retrieving data from the database and presenting it to the user. The user
then changes the data and the application updates database with their changes.

490 CHAPTER 13

Using offline locking patterns
We’ll first describe the example use case and then explain why the concurrency
mechanisms we examined in chapter 12 cannot be used to handle the scenario of
two users editing the same data simultaneously.

13.1.1 An example of an edit-style use case

The Acknowledge Order use case, a typical edit-style use case, describes how the
restaurant acknowledges receipt of an order by either accepting or rejecting it.
This use case has the following specification:

The normal usage scenario for this use case consists of the user selecting the order,
accepting it, and confirming that he wants to accept the order. Since this is a web
application, each step results in the user’s browser sending an HTTP request to the
application. The application processes the request, which involves accessing the
database, and then generates the HTML for the next page. Figure 13.1 shows these
requests and the SQL statements that each one executes.

 The application handles the first request, which is sent when the user begins the
use case, by executing a SQL SELECT statement that retrieves the order. The second
request, which is sent when the user accepts or rejects the order, is handled by the
presentation tier—perhaps within the browser if the application has an Ajax UI, for
example—and does not result in any SQL statements being executed. The applica-
tion handles the third request, which is sent when the user confirms that he wants
to accept or reject the order, by executing an UPDATE statement that changes the
state of the order to either ACCEPTED or REJECTED and updates the notes.

13.1.2 Handling concurrency in an edit-style use case

Because the Food to Go application is a multiuser system, multiple users could
attempt to update the same order simultaneously. For example, while the restau-
rant order taker reviews the order displayed on the Acknowledge Order screen,
another user could try to cancel the order. The application must handle this sce-
nario and either prevent the other user from canceling the order or prevent the
restaurant order taker from accepting a canceled order. Otherwise, the restaurant
would prepare an order that had been canceled.

The system displays an order that has been sent to the restaurant. The restau-
rant’s order taker accepts or rejects the order. The system displays a confirma-
tion page. The restaurant’s order taker confirms that she accepts or rejects the
order. The system changes the state of the order to ACCEPTED or REJECTED.

The need for offline locking 491
Using a single database transaction
In theory, the application could implement the Acknowledge Order use case
using a single database transaction that starts when the user begins the use case
and commits after he acknowledges the order. The application prevents concur-
rent updates by using a serializable transaction or either optimistic locking or pes-
simistic locking. The problem with this approach is that the database transaction
would be long-running because it encompasses multiple web requests and user
think time. In addition, the transaction might last until the web session timed out
if the user could simply walk away from the browser without completing the use
case. Most applications cannot use long-running transactions because they reduce
scalability and concurrency. They reduce scalability because database connec-
tions, which are a precious resource, would be held for the duration of the trans-
action and could not be used by other transactions. Long database transactions
reduce concurrency because rows in the database are locked for the entire time,

User

:FoodToGo
Application

Begin Acknowledge Order

Display Order Details

:Database

SELECT *
FROM PLACED_ORDER
WHERE ORDER_ID = ?

Accept Order

Display Summary Page

Confirm

Display Order Details

UPDATE PLACED_ORDER
SET STATUS = 'ACCEPTED',
 NOTES = '....'
WHERE ORDER_ID = ?

Figure 13.1 Databases accesses during the Acknowledge Order use case

492 CHAPTER 13

Using offline locking patterns
which could prevent other users from accessing them. Consequently, a much bet-
ter approach is to use a separate database transaction for each request.

Using offline locking
When using a separate database transaction for each request, the business logic
for the Acknowledge Order use case uses one transaction to retrieve the order
and another transaction to update the order. The trouble with this approach is
that neither serializable transactions nor pessimistic locking work across multiple
transactions. Database-level pessimistic locking cannot be used across a series of
transactions because the database releases locks at the end of the each transac-
tion. Similarly, serializable transactions only handle concurrent updates made
during their execution because of how they are implemented by the database.
Moreover, optimistic locking only works, by default, within a single transaction
because Hibernate or JDO only checks objects updated during the transaction.
Consequently, the application must handle concurrent updates across a sequence
of transactions using a different approach.

 There are a couple of different mechanisms that an application can use. One
option is the Pessimistic Offline Lock pattern, which implements an application-
level locking mechanism that locks data across multiple database transactions (see
section 13.5). The other option is the Optimistic Offline Lock pattern, which
extends optimistic locking to work across a sequence of database transactions.
Whereas regular optimistic locking only detects data that has changed since it was
read earlier within the same database transaction, optimistic offline locking deter-
mines whether data has changed since the start of the use case, which might have
been several database transactions ago. Let’s look at how this pattern works.

13.2 Overview of the Optimistic Offline Lock pattern

This pattern detects concurrent updates in the same way as the optimistic locking
mechanism described in the previous chapter. When updating the database, it
checks that the data is unchanged since it was read. The only difference is that the
data is read and updated in two separate transactions. The most common way to
implement the Optimistic Offline Lock pattern is for the application to use a ver-
sion number to detect when a row that was read in a previous transaction has
been changed. When the application reads a row from the database, it stores the
row’s version number as part of the session state, for example, in the HttpSession.
Then, when updating a row the application compares its current version number
to the one stored in the session state. If they are different, the application does

Overview of the Optimistic Offline Lock pattern 493
not update the row and instead alerts the user. To see how this pattern works, let’s
look at an example.

13.2.1 Applying the Optimistic Offline Lock pattern

The scenario shown in figure 13.2 illustrates how the Optimistic Offline Lock pat-
tern can be used to handle concurrent updates for the Acknowledge Order use
case. In this scenario, user A is attempting to acknowledge the order while user B
cancels the order.
The sequence of events is as follows:

User A: Acknowledge Order User B: Cancel Order

Time

Transaction A.1:

BEGIN TRANSACTION

SELECT VERSION, ...
FROM PLACED_ORDER
WHERE ORDER_ID = ?

COMMIT
Transaction B.1:

BEGIN TRANSACTION

SELECT VERSION, ...
FROM PLACED_ORDER
WHERE ORDER_ID = ?
...
UPDATE
 PLACED_ORDER
 SET
STATUS='CANCELLED',
VERSION = VERSION + 1
WHERE ORDER_ID = ? AND
VERSION = ?

COMMITTransaction A.2:

BEGIN TRANSACTION

UPDATE
 PLACED_ORDER
 SET VERSION = VERSION + 1
...
WHERE ORDER_ID = ?
 AND VERSION = ?

...FAIL...
Figure 13.2
An example of how the Optimistic Offline
Lock pattern handles concurrent updates

494 CHAPTER 13

Using offline locking patterns
1 Database transaction A.1 retrieves the Order and saves its version number as
part of the session state.

2 Database transaction B.1 retrieves and cancels the order, which incre-
ments the version number.

3 Database transaction A.2 attempts to update the order. Because the ver-
sion number was incremented by transaction B.1, the UPDATE statement
does not update any rows and the transaction fails.

As you can see, the Optimistic Offline Lock pattern is very similar to the optimistic
locking mechanism described in chapter 12. And, like that mechanism, this pattern
can also detect changes using a timestamp or by comparing old and new columns
instead of using a version number. What’s more, as you will see a bit later, an appli-
cation that uses a persistence framework typically implements the Optimistic Offline
Lock pattern using the persistence framework’s optimistic locking mechanism.

13.2.2 Benefits and drawbacks

The Optimistic Offline Lock pattern has a couple of advantages:

■ It is relatively easy to implement.

■ Unlike the Pessimistic Offline Lock pattern, there are no locks to clean up if
the user abandons the session, which is not uncommon in a web application.

However, there are the following drawbacks and issues:

■ Although the Optimistic Offline Lock pattern prevents changes from being
overwritten, it does not prevent two users from attempting to update the
same order. In the scenario described earlier, the user of transaction A
would not be able to save her work and she would have to start over. In
some situations this can be unacceptable—if, for example, a user has
invested a lot of time making the changes.

■ All transactions that update shared data must increment the version num-
ber whenever they update a row, including those that do not use the Opti-
mistic Offline Lock pattern.

13.2.3 When to use this pattern

The Optimistic Offline Lock pattern should be used when:

■ Data is read in one database transaction and updated in another.

■ The probability of conflicts is low and the consequences of redoing the
changes are minimal.

Optimistic offline locking with JDO and Hibernate 495
■ Users regularly abandon sessions and you don’t want to implement a lock
cleanup mechanism.

Now that you have gotten an overview of this pattern, let’s take a detailed look at
how to implement it. We’re not going to show any JDBC or iBATIS code since it
would look similar to the code you saw in the previous chapter. Instead, we’ll
focus on how to implement this pattern using JDO and Hibernate.

13.3 Optimistic offline locking with JDO and Hibernate

One of the benefits of using a persistence framework such as JDO or Hibernate is
that it provides an optimistic locking mechanism that typically uses version num-
bers or timestamps to detect changed objects when it updates the database. In the
previous chapter, we described how it is used within a single database transaction
to prevent concurrent updates. In this section, you will learn how to use it to
implement the Optimistic Offline Lock pattern.

 There are two ways you can use a persistence framework’s optimistic locking
mechanism to implement the Optimistic Offline Lock pattern. You can either
store the version number or timestamp of the object being edited in the session
state, or you can use detached objects. Let’s see how these two approaches work.

13.3.1 Using version numbers or timestamps

Implementing the Optimistic Offline Lock pattern with a version number or times-
tamp is very straightforward. When the application loads an object that it intends
to update in a later database transaction, it stores the object’s version number or
timestamp in the session state in, for example, the HttpSession. Then, during the
database transaction that updates the object, the application loads the object from
the database and verifies that its current version number or timestamp is the same
as the one stored in the session state. They will be different if the object was
updated since it was originally read and the application will signal an error.

 This approach is simple to implement because the persistence framework tracks
changes to objects and increments version numbers or updates timestamps. Domain
objects just need to define a method that returns the current version number or
timestamp. For example, the Order class could define a getVersion() method,
which returns the version number maintained by the persistence framework:

class Order {
…
 private int version;

496 CHAPTER 13

Using offline locking patterns
 public int getVersion() {
 return version;
 }

The O/R mapping for the Order class would map the version field to a database
column and tell the persistence framework to maintain the version number in the
version field. When the code that implements the Acknowledge Order use case
loads the object at the start of the use case, it calls Order.getVersion() and stores
the returned value in the HttpSession.

 Later on, when the user confirms that she wants to acknowledge the order, the
application will execute code that looks something like this:

int originalVersion = … // from HttpSession
Order order = orderRepository.findOrder(orderId);
if (order.getVersion() == originalVersion) {
 order.noteAccepted(notes);
 …
} else {
 // fail
…
}

This code fragment loads the order from the database and verifies that its current
version is the same as the one that was stored in the HttpSession at the beginning
of the use case. It only updates the order if it is unchanged. Otherwise, it will
return an error code to the caller indicating that the order had been changed by
someone else.

Benefits and drawbacks
This approach has the following benefits:

■ It is simple to implement.

■ It stores only a small amount of data in the session state.

■ It provides better encapsulation than using detached objects because the
presentation tier can only access the business logic via a façade or service.

■ Recovering from offline optimistic locking failures can be more straightfor-
ward than with detached objects because the changes are detected by the
application instead of the persistence framework.

But keep in mind these drawbacks:

Optimistic offline locking with JDO and Hibernate 497
■ Some JDO implementations require the application get the version number
or timestamp by calling JDOHelper.getVersion() instead of simply getting it
from a field. This makes the code more complicated and dependent on the
JDO APIs.

■ Editing a graph of objects requires the application to keep maintain multi-
ple version numbers or timestamps, which can be tricky.

■ It is not practical to use this approach when the persistence framework
implements optimistic locking using state comparison because you would
have to write tedious and error-prone code to store a copy of the object in
the session state and perform a field-by-field comparison before updating it.

When to use it
You should this approach when:

■ The object that is being updated has an accessible version number or time-
stamp field.

■ The application updates a small number of objects.

■ It is important to encapsulate the business logic.

■ It is important to minimize the size and complexity of the session state.

We won’t show an example of implementing the Optimistic Offline Lock pattern
with an object version number because in many Hibernate and JDO applications
it’s a lot easier to implement this pattern using detached objects.

13.3.2 Using detached objects

A detached object is an object that is no longer persistent but keeps track of its
persistent identity and contains data from the database, including references to
other detached objects. Because detached objects also keep track of their version
number or timestamp, they are a convenient way to implement the Optimistic
Offline Lock pattern. When the application loads an object that it will later
update, it stores a detached copy of the object as part of the session state. Later,
when the user saves the changes the application updates the object and reattaches
it. The persistence framework uses its optimistic locking mechanism to verify that
the database is unchanged since the object was detached. It will throw an excep-
tion if the object has been changed in the database.

 Detached objects work well with an edit-style use case such as the Acknowledge
Order use case and can make it easier for the presentation tier to pass the user’s
changes to the business tier. The business tier returns the detached object to the

498 CHAPTER 13

Using offline locking patterns
presentation tier, which will store it in the HttpSession or serialize it to the appli-
cation’s client. When the user saves her changes, the presentation tier updates the
detached object with those changes and then passes it to the business tier. The
business tier then calls the persistence framework to reattach the object and
update the database.

 Let’s briefly review how to detach and attach JDO and Hibernate objects and
look at some of the problems with using them.

Detaching and attaching objects in JDO and Hibernate
As we have seen in chapter 7, the details of how you detach and attach objects
depend on whether you are using JDO or Hibernate. For example, the JDO ver-
sion of the business logic for the Acknowledge Order use case attaches and
detaches objects as follows. When it loads an Order at the start of the use case, it
calls JdoTemplate.detachCopy() to detach it:

Order order = orderRepository.findOrder(ordered);
Order detachedOrder = getJdoTemplate().detachCopy(order);

It then returns the detached order to the presentation tier, which stores it in the
HttpSession. After the user has confirmed that he wants to accept the order, the
presentation tier updates the detached order and calls the business logic to attach
it. The business tier calls attachCopy():

Order order = getJdoTemplate().attachCopy(detachedOrder);

When the JDO implementation updates the database, which is typically at commit
time, it will throw an exception if the order has been changed in the database by a
different user.

 The Hibernate version of the business logic would be slightly simpler because
Hibernate objects are automatically detached when the Session is closed. It would
just have to call HibernateTemplate.update() to attach the acknowledged order:

getHibernateTemplate().update(detachedOrder)

In section 13.4 we will look at the details of the AcknowledgeOrderService, which
uses detached objects.

Benefits of using detached objects
Implementing the Optimistic Offline Lock pattern using detached objects has the
following benefits:

Optimistic offline locking with JDO and Hibernate 499
■ The application is unaware of how the persistence framework implements
optimistic locking. It even works with state comparison-based optimistic
locking.

■ It provides a simple way to lock an entire object graph, such as an order and
its line items, without having to explicitly store version numbers for each
object in the session state.

■ It simplifies the application by enabling the presentation tier to update the
detached object directly.

This approach also has drawbacks. As we have seen in chapter 7, the business logic
is less encapsulated because the presentation tier has access to the detached
objects. In addition, the session state can become bloated with detached objects
and recovering from offline optimistic locking failures can be tricky. Let’s look at
those two problems.

Bloated session state
One potential problem with using detached objects to implement the Optimistic
Offline Lock pattern is that the session state can become bloated with graphs of
detached objects. Each graph of detached objects consists of detached objects
that are directly or indirectly referenced by the objects being edited. In a Hiber-
nate application, the detached object graph will contain all accessible objects that
were loaded by the application, including objects that were navigated to by the
business tier as well as objects that were eagerly loaded. For example, the business
logic for the Acknowledge Order use case must load the order’s line items and its
restaurant in order to display on the Acknowledge Order screen. As a result, these
objects become part of the session state, which significantly increases the amount
of memory required to store it.

 JDO gives you a lot more control over the structure of the object graph. By defin-
ing the appropriate fetch group, you can ensure that the detached object graph
contains only the objects being edited. However, this can require the business tier
to return at least two object graphs: one that contains the objects to store in the ses-
sion state and another that contains the data that is displayed to user. Sometimes it
is a lot easier to return a single object graph that contains both sets of objects.

Handling optimistic offline locking failures
Another issue is determining when an optimistic offline locking failure has
occurred, if the business tier has attached some objects and updated others within
the same transaction. The persistence framework throws the same exception
regardless of whether an optimistic offline locking failure or a regular optimistic

500 CHAPTER 13

Using offline locking patterns
locking failure occurs. Hibernate throws a StaleObjectStateException and JDO
throws a JDOOptimisticVerificationException, which are both mapped by Spring
to a subclass of ObjectOptimisticLockingFailureException. The presentation tier,
which catches the exception, does not immediately know whether it was caused by
an optimistic offline locking failure or a regular optimistic offline locking failure.

 One solution is to force Hibernate or JDO to verify that the object is
unchanged in the database immediately after attaching it. A Hibernate applica-
tion can do this by calling Session.lock(), and a JDO application can call Persis-
tenceManager.flush() or PersistenceManager.checkConsistency(). If the object
has changed in the database since it was detached, the persistence framework will
throw an exception. Provided that the application has not updated any other
objects, it can assume that the exception is caused by an optimistic offline locking
failure. The downside of this approach is that prematurely flushing changes can
reduce performance because the persistence framework has less opportunity to
optimize database accesses.

 The other way to determine whether the exception was caused by an offline
locking error is to examine the ObjectOptimisticLockingFailureException,
which contains the class and ID of the object that failed the optimistic locking.
This solution avoids premature and potentially inefficient flushing of changes to
the database, but does have the drawback of making the exception-handling logic
more complicated.

When to use this approach
An application should use this approach when:

■ It simplifies how the presentation tier passes the user’s changes to the busi-
ness tier.

■ The persistence framework does not provide access to the version number
or timestamp.

■ Optimistic locking is implemented using state comparison instead version
numbers or timestamps.

■ It edits a graph of objects rather than an individual object.

Detached objects are a very convenient way to implement the Optimistic Offline
Lock pattern. Let’s take an in-depth look at an implementation of the Acknowledge-
OrderService that uses them.

Optimistic offline locking with detached objects example 501
13.4 Optimistic offline locking
with detached objects example

In this section, we will look at a Domain Model pattern–based design for the
Acknowledge Order use case that implements the Optimistic Offline Lock pattern
using detached objects. At the start of the use case, the business logic detaches the
order that is being acknowledged and hands it back to the presentation tier.
When the user acknowledges or rejects the order, the presentation tier updates
the order and passes it back to the presentation tier, which reattaches it.

 The design, which is shown in figure 13.3, consists of several classes, including
AcknowledgeOrderService, Order, and OrderRepository.

Spring TransactionInterceptor

AcknowledgeOrderResult getOrderToAcknowledge(orderId)
AcknowledgeOrderResult acknowledgeOrder(order)

<<interface>>
AcknowledgeOrderService

AcknowledgeOrderResult getOrderToAcknowledge(orderId)
AcknowledgeOrderResult acknowledgeOrder(order)

AcknowledgeOrderServiceImpl

accept(notes)
reject(notes)

Order

Order detach(Order)
Order attach(Order)

<<interface>>
OrderAttachmentManager

Order findOrder()

<<interface>>
OrderRepository

statusCode

Acknowledge
OrderResult

Presentation
Tier

Figure 13.3 Domain Model pattern–based design for the Acknowledge Order use case

502 CHAPTER 13

Using offline locking patterns
Because the business logic in this use case is simple, there isn’t a separate POJO
façade and the AcknowledgeOrderService is called by directly by the presentation
tier. A Spring TransactionInterceptor ensures that each call to AcknowledgeOr-
derService executes within its own transaction. The same design works with both
Hibernate and JDO detached objects because the different APIs for detaching and
attach objects are encapsulated behind the OrderAttachmentManager inter-
face.The responsibilities of each class are as follows:

■ AcknowledgeOrderService defines the public interface that encapsulates the
business logic.

■ AcknowledgeOrderServiceImpl implements the business logic.

■ Order is the domain object.

■ OrderRepository is used by the AcknowledgeOrderService to find the order.

■ OrderAttachmentManager encapsulates the mechanism for attaching and
detaching orders.

■ AcknowledgeOrderResult is returned by the service and contains a status
code and a detached order.

In this design, the presentation tier calls AcknowledgeOrderService.getOrder-
ToAcknowledge(), which returns the detached order, including its line items and
restaurants. The presentation tier displays the order to the user and stores it in
the HttpSession. When the user saves their changes, the presentation tier updates
the order by calling Order.accept() or Order.reject(), and then passes it to
AcknowledgeOrderService.acknowledgeOrder(). This method reattaches the
order, which updates the database with the changes. If the order has changed in
the database, the persistence framework throws an exception.

13.4.1 Implementing the domain service

Most of the business logic for this use case is implemented by AcknowledgeOrder-
ServiceImpl, which is shown in listing 13.1. It defines a getOrderToAcknowledge()
method, which returns the detached order, and an acknowledgeOrder() method,
which reattaches the updated order. AcknowledgeOrderServiceImpl uses an
OrderRepository to retrieve the order and an OrderAttachmentManager to detach
and attach the Order.

public class AcknowledgeOrderServiceImpl implements
 AcknowledgeOrderService {

Listing 13.1 AcknowledgeOrderServiceImpl

Optimistic offline locking with detached objects example 503
 OrderRepository orderRepository;

 OrderAttachmentManager attachmentManager;

 public void DetachingAcknowledgeOrderServiceImpl(
 OrderRepository orderRepository,
 OrderAttachmentManager attachmentManager) {
 this.orderRepository = orderRepository;
 this.attachmentManager = attachmentManager;
 }

 public AcknowledgeOrderResult getOrderToAcknowledge(
 String orderId) {
 Order order = orderRepository.findOrder(orderId);
 Order detachedOrder =
 attachmentManager.detach(order);
 if (order.isAcknowledgable()) {
 return new AcknowledgeOrderResult(
 AcknowledgeOrderResult.OK, detachedOrder);
 } else
 return new AcknowledgeOrderResult(
 AcknowledgeOrderResult.ILLEGAL_STATE,
 detachedOrder);
 }

 public AcknowledgeOrderResult acknowledgeOrder(
 Order detachedOrder) {
 Order order = attachmentManager.
bbbbbbbbbbbbbbb➥ attach(detachedOrder);
 return new AcknowledgeOrderResult(
 AcknowledgeOrderResult.OK, detachedOrder);
 }

}

Let’s take a closer look:

AcknowledgeOrderServiceImpl defines a constructor that takes an OrderReposi-
tory and an OrderAttachmentManager as parameters, which enables it to be initial-
ized via dependency injection.

The getOrderToAcknowledge() method calls the OrderRepository to retrieve the
order. It then detaches the Order. It returns an AcknowledgeOrderResult contain-
ing the detached order and status code indicating whether the order can be
acknowledged.

The acknowledgeOrder() method attaches the updated detached Order and
returns an AcknowledgeOrderResult.

Creates an
Acknowledge
OrderServiceImpl

B

C Detaches
order

D Attaches
order

B

C

D

504 CHAPTER 13

Using offline locking patterns
13.4.2 Implementing the persistent domain class

The Order class has accept() and reject() methods that update a status field that
tracks where the order is in the delivery process:

class Order {
…
 private int version; // Hibernate only
 private String state;

 public boolean isAcknowledgable() {
 return state.equals(SENT);
 }

 public void accept(String notes) {
 if (!isAcknowledgable())
 throw new ApplicationError();
 this.state = ACCEPTED;
 this.notes = notes;
 }

 public void reject(String notes) {
 if (!isAcknowledgable())
 throw new ApplicationError();
 this.state = REJECTED;
 this.notes = notes;
 }
…

The Hibernate version of this class also has a version field, which is optional when
using JDO.

 The isAcknowledgable() method returns true if the order can be acknowl-
edged. The accept() method updates the order with the notes and changes its
state to ACCEPTED. The reject() method is similar—it changes the state to
REJECTED. The accept() and reject() methods both throw an exception if the
order is in the wrong state to be acknowledged.

 Because Order is a persistent class, we also need to define its O/R mapping.
Let’s see how to do this for JDO and Hibernate.

JDO configuration
In the JDO ORM metadata for the Order class, we must specify that it uses optimis-
tic locking and that it is detachable. In addition, since the line items and restau-
rants are returned to the presentation tier we must also configure those classes to
be detachable. Here is an excerpt of the JDO 2.0 ORM metadata that configures
the Order class:

Optimistic offline locking with detached objects example 505
<class name="Order"
 table="PLACED_ORDER"
 detachable="true"
 identity-type="application">

 <version strategy="version-number" column="VERSION"/>
…
</class>

The detachable="true" attribute specifies that instances of the Order class can be
detached. The <version> element specifies that the Order class should maintain the
version number in the VERSION column. As described in chapter 5, you can use other
optimistic locking strategies such as strategy="timestamp", which uses a time-
stamp. At the time of this writing, some JDO implementations did not support the
JDO 2.0 metadata and required vendor-specific extensions to be used.

Hibernate configuration
In the Hibernate ORM metadata, we just need to configure optimistic locking
because Hibernate objects are automatically detached:

<hibernate-mapping>
 <class
 name="Order"
 table="PLACED_ORDER">

 bb<version property="version" column="VERSION" />
…
</hibernate-mapping>

The <version> element specifies that the Order class uses the version field for
optimistic locking and maps it to the VERSION column of the PLACED_ORDER
table. As we saw in chapter 6, you can also use other optimistic locking strategies
such as the <timestamp> element to specify a timestamp column.

 Now that you know how to configure the O/R mapping, we’ll show you how to
detach and attach objects.

13.4.3 Detaching and attaching orders

The AcknowledgeOrderServiceImpl uses the OrderAttachmentManager to detach
and attach orders. This interface, which encapsulates the persistence framework–
specific detached objects APIs, defines a detach() method, which detaches the
order, and an attach() method, which attaches an order:

public interface OrderAttachmentManager {

 Order detach(Order order);

506 CHAPTER 13

Using offline locking patterns
 Order attach(Order order);
}

In addition to detaching the order, the detach() method also detaches the order’s
restaurant, its line items, and their menu items so that they can be displayed to
the user. There are Hibernate and JDO implementations of this interface.

Using JDO detached objects
Listing 13.2 shows the JDO version of the OrderAttachmentManager. It detaches
orders by using a JdoTemplate to execute a KodoJDODetachObjectCallback, which is
the class we first saw in chapter 7 that uses the Kodo JDO detachment API. Order-
AttachmentManager attaches orders by executing a KodoJDOAttachObjectCallback
that is similar to a KodoJDODetachObjectCallback. The list of fields to detach is
passed into the JDOOrderAttachmentManager using dependency injection.

public class JDOOrderAttachmentManager implements
 OrderAttachmentManager {
 private String[] fieldsOrFetchGroups;

 private JdoTemplate jdoTemplate;

 public JDOOrderAttachmentManager(
 JdoTemplate jdoTemplate,
 String[] fieldsOrFetchGroups) {
 this.jdoTemplate = jdoTemplate;
 this.fieldsOrFetchGroups = fieldsOrFetchGroups;
 }

 public Order detach(Order order) {
 return (Order) jdoTemplate
 .execute(new KodoJDODetachObjectCallback(
 order, fieldsOrFetchGroups));
 }

 public Order attach(Order order) {
 return (Order) jdoTemplate
 .execute(new KodoJDOAttachObjectCallback(
 order));
 }

}

Both the detach() and attach() methods instantiate and execute a JdoCallback
that calls Kodo JDO.

Listing 13.2 JDOOrderAttachmentManager

Optimistic offline locking with detached objects example 507
Using Hibernate detached objects
The HibernateOrderAttachmentManager does not need to detach orders, but it does
need to make sure they are loaded. Here is HibernateOrderAttachmentManager, which
calls HibernateTemplate.initialize() to ensure that the required objects are loaded
and calls HibernateTemplate.update() to reattach the order:

public class HibernateOrderAttachmentManager extends
 HibernateDaoSupport implements OrderAttachmentManager {

 public HibernateOrderAttachmentManager(
 HibernateTemplate hibernateTemplate) {
 setHibernateTemplate(hibernateTemplate);
 }

 public Order detach(Order order) {
 HibernateTemplate template = getHibernateTemplate();
 template.initialize(order);
 template.initialize(order.getLineItems());
 for (Iterator it = order.getLineItems().iterator();
 it.hasNext();){
 OrderLineItem lineItem = (OrderLineItem) it.next();
 MenuItem menuItem = lineItem.getMenuItem();
 template.initialize(menuItem);
 }
 return order;
 }

 public Order attach(Order order) {
 getHibernateTemplate().update(order);
 return order;
 }

}

Because the Hibernate objects are automatically detached when the session is
closed, the detach() method just calls HibernateTemplate.initialize() to
ensure that the order, its line items, and their menu items are loaded. An alterna-
tive approach would be for the AcknowledgeOrderService to load the order by
executing a query that uses fetch joins to eagerly load the objects. This simplifies
the code by eliminating the need to call HibernateTemplate.initialize() and
would improve performance by reducing the number of database accesses. How-
ever, because a Hibernate application cannot always eagerly load all of the objects
that it must return to the presentation tier, it is worthwhile looking at an example
that uses Hibernate.initialize().

 The attach() method calls HibernateTemplate.update() to attach the order.
This method reassociates the order with the Session, which does not involve any

508 CHAPTER 13

Using offline locking patterns
database accesses. Later, at commit time, when Hibernate tries to update the
order it will throw an exception if the order has changed in the database since it
was first loaded.

 As you can see, implementing the Optimistic Offline Lock pattern is relatively
straightforward because you can leverage the optimistic locking and detached
object mechanisms provided by JDO or Hibernate. However, for some use cases it
is not enough to prevent one user from overwriting another’s changes and you
must use the Pessimistic Offline Lock pattern, which prevents two users from edit-
ing the same data simultaneously.

13.5 The Pessimistic Offline Lock pattern

We have seen that the Optimistic Offline Locking pattern is a partial solution to
the problem described at the start of this chapter. It prevents changes made to an
order from mysteriously disappearing. The application will display a message tell-
ing the customer service representative to start over. This is certainly better than
losing the changes, but it’s still pretty irritating. We need a way of guaranteeing
that users can save their changes. To do that, we need to use the Pessimistic
Offline Lock pattern.

 The Pessimistic Offline Lock pattern prevents concurrent updates by locking
the shared data while it is being edited. It is similar to pessimistic locking where
the transaction locks the data when it is read, which prevents others from access-
ing it, and releases the locks when it commits or rolls back. However, the key dif-
ference is that the Pessimistic Offline Lock pattern is an application-level
mechanism that works over multiple database transactions and the locks are
implemented by the application rather than the database. The application locks
the data when reading and displaying it to the user, and unlocks the data when
the user saves her changes.

13.5.1 Motivation

In order to understand why the Pessimistic Offline Lock pattern is necessary, let’s
look at the Modify Order use case. This use case, which is more elaborate than the
Acknowledge Order use case, describes how a customer service representative can
change an order. It has the following specification:

 The user can potentially take several minutes to change the order, and so like
the Acknowledge Order use case, this use case consists of multiple database trans-
actions. The first transaction loads the order from the database so that it can be

The Pessimistic Offline Lock pattern 509
displayed to the user, one or more other transactions read data to validate the
user’s input, and the last transaction updates the order with the user’s changes.

 Although you could handle concurrent updates by using the Optimistic
Offline Lock pattern, this pattern only detects concurrent updates when the user
saves the order. While a user would only be mildly irritated if he had to reenter
changes during the Acknowledge Order use case, which involves only a small
amount of user input, it is not acceptable for the Modify Order use case. A cus-
tomer service representative could spend several minutes on the phone with a
customer changing the order only to discover that she could not save her
changes. Telling the customer to start over would be extremely frustrating for
everyone concerned.

13.5.2 Using the Pessimistic Offline Lock pattern

In use cases such as this where the probability of concurrent updates is high or the
consequences are severe, a better approach is to use the Pessimistic Offline Lock
pattern, which implements an application-level locking mechanism that allows
only one user to edit a particular piece of data at a time. Typically, either domain
model services or transaction scripts are responsible for locking and unlocking
the data because they are aware of when the use case begins and ends. The trans-
action script or service method that is called at the start of the use case to load the
data being edited would lock the data. The transaction script or service method
that is called at the end of the use case unlocks the data.

 Figure 13.4 shows how the business logic for the Modify Order use case can use
the Pessimistic Offline Lock pattern to ensure that only one user can edit the
order at a time.

 The first transaction, which loads the order to display to the user, locks the
order and the last transaction unlocks the order after updating with the user’s
changes. If another user tried to edit the order, they would not be able to do so
because they could not claim the lock. In section 13.7 we will see that an applica-
tion typically claims and releases locks by inserting and deleting rows in an appli-
cation-level lock table.

The user (customer service representative) selects the order to edit. The system
displays the order. The user updates the quantities, the delivery address and
time, and the payment information. The system displays the updated order. The
user saves his changes. The system updates the order.

510 CHAPTER 13

Using offline locking patterns
13.5.3 Benefits and drawbacks

Let’s look at the benefits and drawbacks of the Pessimistic Offline Lock pattern.

Ensures that a user can save changes
The main benefit of the Pessimistic Offline Lock pattern is that it prevents con-
current updates by locking shared data when it is read. It ensures that users will be
able to save their changes and will not be required to start over. As a result, the
usability of the application is improved.

Impacts the application globally
An unfortunate drawback of this pattern is that if you decide to use it in your
application, then all of the business logic that updates the shared data must be
aware of the pattern. Unfortunately, this can be error-prone because it can be dif-
ficult to use the pattern consistently. When you start using this pattern in your
application, it is all too easy to miss existing code that must be modified. Similarly,

:Presentation
Tier

:Business
Tier

Begin Modify Order
Begin Modify Order

Update Order Details

Validate User Input

Save Changes

Save Changes

Database Transaction 1

Database Transaction 2

Database Transaction N

:Database

Read Order

Update Order

...

Read ...

Lock Order

Unlock Order

Figure 13.4 Using the Pessimistic Offline Lock pattern

Pessimistic offline locking design decisions 511
when writing new code you might forget to use the pattern. One potential solu-
tion is the Implicit Lock pattern [Fowler 2002], which automates the lock manage-
ment. However, implementing this pattern can be difficult because the business
logic determines when you must lock and unlock data. As a result, you often have
to rely on careful coding and lots of testing.

Requires a mechanism to forcibly release locks
In addition to globally impacting the application, this pattern requires you to
implement a mechanism to release the locks when a user abandons her session.
One solution is to implement a timeout mechanism. The application could
release the locks held by a user when the HttpSession times out. Alternatively, the
application could release locks that have been held for too long. However, the
trouble with timeouts is that if they are too long, users are prevented from getting
work done and if they are too short, users risk being timed out by accident.

 For many applications, a better approach is to let users steal locks after warn-
ing them that the data they want to edit is locked by someone else. For example, if
a user attempts to edit an order that is locked by someone else, the application
can ask them to confirm that they really want to edit the order. Another possibility
is to only let users with administrative privileges steal locks. Which option is better
depends on the specific requirements of an application.

13.5.4 When to use this pattern

Because the Pessimistic Offline Lock guarantees that the user who edits the data
can save the changes, this pattern should be used when:

■ Data is read in one database transaction and updated in another.

■ The probability of conflicts is high.

■ The consequences of conflicts are severe.

■ Users typically do not abandon their sessions or it’s feasible to implement a
lock cleanup mechanism.

Let’s now look at the different decisions you must make when implementing this
pattern.

13.6 Pessimistic offline locking design decisions

When using database-level pessimistic locking, the database is responsible for the
implementation of the locking mechanism. The only thing that you get to decide
is what to lock and perhaps the kind of lock to use. But because the Pessimistic

512 CHAPTER 13

Using offline locking patterns
Offline Lock pattern is an application-level locking mechanism, you have to make
several other design decisions, including how to lock it, when to lock it, and where
to store the locks. Let’s look at each of the decisions you must make in turn.

13.6.1 Deciding what to lock

One decision that you must make is what to lock. In many use cases, there is a class
that obviously needs to be locked. For example, in the Modify Order use case it’s
the order that must be locked because it is the object being edited. Sometimes,
however, the class that must be locked is less obvious. Consider, for example, a use
case that edits only the order’s line items. You could lock the individual line items
but this would require locking multiple objects, which is messy to implement. A bet-
ter approach is to lock a group of related objects using a single lock—the so-called
Coarse-Grained Lock pattern [Fowler 2002]. In this example, you would lock the
order instead of the individual line items. As well as being easier to implement, it
avoids the problem of locking multiple objects individually, which can lead to dead-
locks. See [Fowler 2002] for a discussion of the details of using this pattern.

13.6.2 Determining when to lock and unlock the data

In addition to deciding what to lock, you must identify which domain service
methods and transaction scripts must lock and unlock data. The method or meth-
ods that lock the data are those that are called to start the use case and load the
data that is being edited. Similarly, the data must be unlocked by those methods
that are called at the end of the use case. Methods that are called during the use
case can verify that the lock is still held but are not required to do so.

13.6.3 Choosing the type of lock

Another decision you must make when implementing this pattern is which type of
lock to use. The simplest kind of lock is an exclusive write lock. A transaction that
wants to update the data claims the lock and prevents others from editing it.
Transactions that only read the data do not have to claim the lock and are not
blocked waiting for the owner of the lock to finish editing the data. Exclusive
write locks work well for many use cases, so they are the only kind of lock we’ll
describe in detail.

 There are, however, other kinds of locks that are useful in some situations.
Let’s suppose that the data being edited can become inconsistent during the use
case. The application could, for example, apply the user’s changes immediately
rather than saving them until the end and applying them in a final transaction.
One way to prevent other transactions from reading the inconsistent data is to use

Pessimistic offline locking design decisions 513
an exclusive lock. All transactions that read and write the shared data must claim
an exclusive lock, which allows only one transaction at a time to access the data.
This ensures that transactions only see consistent data and that only one transac-
tion can update the data at a time.

 The trouble with using an exclusive read lock is that it can reduce performance.
A transaction that only reads the data will block other transactions that also want to
only read the data. A more sophisticated approach is to use read/write locks. Trans-
actions that read the data claim read locks and transactions that update the data
claim write locks. The shared data can have multiple read locks or one write lock.
This allows multiple transactions to read the data but only one transaction to edit
it. Furthermore, it prevents the data from being read and edited at the same time.
This approach preserves data consistency without reducing performance as much
as an exclusive read lock, but can be complicated to implement.

13.6.4 Identifying the lock owner

The fourth decision you must make when implementing the Pessimistic Offline
Lock pattern is what to use as the identity of the lock owner. In a web application,
one option is to use the HttpSession ID as the lock owner. The presentation tier
passes the HttpSession ID to the business tier as part of each request. This approach
is useful if, for example, users are accessing the application anonymously. One
limitation of using the session ID is that, because it is a cryptic string, it cannot be
used to determine the person who owns the lock.

 Another option is to use the user ID as the lock owner. The presentation tier
could pass the user ID as a parameter when it calls the business tier. Alternatively,
the business tier can call a security framework-specific API such as Acegi Security’s
SecurityContextHolder to get the identity of the user, which is more secure and
eliminates the need for the presentation tier to provide it. One limitation of using
the user ID is that users must be logged in, which means this approach cannot be
used in applications that have anonymous users. In addition, portability can be an
issue because how you get the user ID depends on the security framework. Despite
these drawbacks, it is a useful approach.

 For simplicity, the example that you will see later in this chapter has the pre-
sentation tier pass in the user ID.

13.6.5 Maintaining the locks

You must also decide how to maintain the locks. An application that runs on a sin-
gle application server can implement an in-memory locking mechanism such as a
singleton hash table. However, because most enterprise applications are clustered,

514 CHAPTER 13

Using offline locking patterns
the locks must usually be stored in the database. There are two different ways an
application can store locks in the database. One option is to store locks in a sepa-
rate table that is managed by a lock manager. The other option is to store locks in
the same table as the data.

Lock managers
A lock manager provides an API for acquiring, verifying, and releasing locks based
on the object’s identity or the row’s primary key. Here is an example of a lock
manager API:

public interface LockManager {
 public boolean acquireLock(String classId, String pk,
 String owner);

 public boolean verifyLock(String classId, String pk,
 String owner);

 public void releaseLock(String classId, String pk,
 String owner);
}

The LockManager interface defines three methods: acquireLock(), which acquires
a lock; verifyLock(), which verifies that the lock exists; and releaseLock(), which
releases a lock. All three methods take the same three parameters:

■ classId is the type of the data, such as the class name.

■ pk is the identity or primary key of the data.

■ owner represents the identity of the entity claiming the lock and is usually
either the user or session ID.

Together, the classId and the pk identify the data being locked or unlocked. The
acquireLock() returns a boolean value indicating whether the object was locked,
and verifyLock() returns a boolean indicating whether the specified data was
locked. The releaseLock() method throws an exception if the object was not
locked by the caller.

 The lock manager stores locks in a database table. Each row in the table stores
the type and identity of the entity (object or row) that is locked and the identity of
the owner of the lock. The table’s primary key consists of the identity of the entity,
which means that an entity can have at most one lock. The lock manager acquires
a lock by inserting a row into the table and releases the lock by deleting the row.

Pessimistic offline locking design decisions 515
Using a lock manager
The simplest way to use a lock manager is for the database transaction that reads
the data to first lock the data before reading it. This ensures that the data that is
read is up to date because once it is locked no other transactions can update it.
You can do this if, for example, you are loading an object by its primary key
because the transaction can call the lock manager before calling the repository or
persistence framework API. However, if a transaction obtains the object by execut-
ing a query or by navigation, it does not know the object’s primary key until after
it has been loaded. It is possible that in between the transaction loading the object
and locking it another transaction changes the object, which causes the first trans-
action to use stale data and potentially overwrite those changes. To see why, con-
sider the scenario shown in figure 13.5, which shows two database transactions
accessing the same data. In this example, transaction A reads the data at the start
of one use case and transaction B updates the data at the end of another use case.

 In this scenario, transaction A reads an order that is locked by transaction B.
Transaction B then updates the order and releases the lock, which enables trans-
action A to acquire it. As a result, transaction A has stale data and would subse-
quently overwrite the changes made by transaction B.

 One solution to this problem is to use database-level pessimistic locking and pre-
vent another transaction from changing the data before the lock is claimed. In the
scenario in figure 13.5, transaction A would claim the database-level pessimistic
lock, which would block B from updating it and releasing the offline lock. Trans-
action A would then discover that the order had an offline lock and would roll back.

Database transaction A Database transaction B

Time

Begin transaction
Read order

Begin transaction
Update order
Release lock
Commit transaction

Claim lock
Returns order (which is now out
of date)
Commit transaction

Figure 13.5
An example of reading before locking

516 CHAPTER 13

Using offline locking patterns
The other option is to use database-level optimistic locking. After claiming the
lock, transaction A performs an optimistic locking check to verify that the order
was unchanged. How this is done depends on the persistence framework. A
Hibernate application can call Session.lock() with a lock mode of LockMode.READ
to verify that an object is unchanged in the database. A JDO application would
have to make a possibly dummy modification to the object in order to cause the
JDO implementation to perform the check at commit time.

Implementing a lock manager
Because of the benefits of using a persistence framework, you might expect to
implement the lock manager with a persistence framework. You could map a Lock
class to the OFFLINE_LOCK table and claim and release locks by creating and
deleting objects. However, this approach is not as simple as it might appear. It can
be impossible for the business tier to handle locking errors because they will be
reported as commit-time exceptions by those persistence frameworks that do not
insert objects until commit time. In addition, the application must, as we just saw,
use a database transaction-level concurrency mechanism because data is read
before the lock is claimed at commit time.

 Consequently, the easiest way to implement a lock manager is to use SQL
directly. The lock manager can use iBATIS or JDBC to atomically claim a lock by exe-
cuting an INSERT statement and release one or more locks by executing a DELETE
statement. In addition to being simple and easy to understand, a JDBC/iBATIS lock
manager is more reusable because it is not coupled to any particular persistence
framework. In 13.7.1, we will look at an iBATIS implementation of a LockManager.

Benefits and drawbacks of using a lock manager
Implementing the Pessimistic Offline Lock pattern with a lock manager approach
has a number of benefits:

■ An application can lock an object using only its ID, which means that it can
first lock the object and then read it, which avoids the problem of stale data.
In addition, the application can lock entities that have been deleted or not
yet inserted.

■ Lock management is centralized. The lock management code is only in the
lock manager rather than in every class. The locks are stored in a single data-
base table, which makes it easy to see which objects are locked and by whom.

Pessimistic offline locking design decisions 517
■ This approach is also more flexible. We don’t have to build the locking strat-
egy into the domain model classes ahead of time. The lock management
can be handled by the service classes instead.

■ The mechanism for claiming a lock is simple and easy to understand since a
lock manager can atomically claim a lock using an INSERT statement.

There are, however, a couple of drawbacks and issues to consider when using a
lock manager:

■ Using a lock manager makes the design more complicated. All business
transactions, even ones that consist of a single database transaction, must
claim and release locks. Also, determining whether an object is locked
involves a database query rather than simply checking a flag field.

■ Locking objects that are retrieved using a query or by navigation is tricky
because the application must execute the query in order to know which
objects to lock and consequently loads the objects before locking. As we
described earlier, an application must use either pessimistic or optimistic
locking to ensure that it uses the current version of the data and to prevent
lost updates. Or, the application must reread the data after locking it to ver-
ify that it hasn’t changed.

There are also some additional issues to consider when using a JDBC/iBATIS-
based lock manager with a persistence framework:

■ Sometimes an application must execute a query that includes or excludes
locked data. For example, the query that is used in the Send Orders use
case to find orders that are ready to send should ideally ignore locked
orders. A SQL query can ignore locked orders by simply doing a join with
the lock table. However, if the application uses a persistence framework
query, then the lock table must be mapped to a class in order for it to be ref-
erenced by the query.

■ Enabling JDBC/iBATIS code and JDO code to share a lock manager is tricky
if the JDO code uses datastore identity. As described in chapter 5, the JDO
code does not have access to the object’s primary key and the JDBC code
does not have access to the object’s JDO identity. In order to lock data that is
accessed by both JDBC and JDO code, the application must use some other
unique identifier to lock the data.

A lock manager is a centralized and reusable mechanism for implementing the
Pessimistic Offline Lock pattern. However, as you have seen, you need to address

518 CHAPTER 13

Using offline locking patterns
some tricky implementation issues when using one. Consequently, you might want
to consider storing locks in the objects themselves.

Storing locks in objects
Instead of using a centralized lock manager, an application can store a lock in each
object. Each class that supports pessimistic offline locking has a lock field, which
stores the identity of the lock’s owner. The transaction script or domain service
method claims the lock by setting this field and releasing this lock by setting it to null.

 A JDBC or iBATIS application can atomically claim a lock by executing a SQL
UPDATE statement, but an application that uses a persistence framework must load
an object in order to determine whether it is locked, set the lock field, and write it
back to the database. This means that acquiring a lock is not an atomic action and
the application must instead use database-level optimistic or pessimistic locking or
a serializable transaction in order to detect concurrent updates. However, because
an application is likely to already be using one of these mechanisms, this is usually
not a problem.

Benefits and drawbacks of storing locks in objects
This approach has some benefits:

■ The application doesn’t have to implement an additional mechanism for
persisting locks.

■ It is easy for an application to determine whether an object is locked—it sim-
ply checks the lock field. Business transactions that consist of a single data-
base transaction can verify that an object is unlocked by checking the lock
field rather than claiming and releasing a lock. Also, queries can find locked
or unlocked objects by including the lock field in the query’s where clause.

■ It avoids the problem encountered when using a lock manager and imple-
menting locks in an application that uses iBATIS/JDBC and JDO objects that
use datastore identity.

There are, however, a number of drawbacks and issues with this approach:

■ The decision as to whether a class supports locking must be done up front.
There is more code to maintain because lock management code is dupli-
cated in every class that can be locked.

■ Existing tables must be changed to add a lock column, which might not be
possible when working with a legacy schema. Alternatively, each class could

Pessimistic offline locking design decisions 519
be mapped to the original table and a lock table. However, the overhead of
reading and updating the extra table could reduce performance.

■ The application must query multiple tables to determine which entities are
locked by a user.

■ Determining whether an object is locked can be tricky in an application
that uses a process-level cache because the in-memory object might not be
up to date. The application might have to somehow force the latest copy of
an object to be loaded.

Despite these drawbacks, however, storing locks in objects is sometimes the sim-
plest way to implement the Pessimistic Offline Lock pattern.

13.6.6 Handling locking failures

The sixth and final decision you must make when implementing the Pessimistic
Offline Lock pattern is what to do when one user tries to access (typically edit)
data that is locked by another user. When this happens, the attempt to claim the
lock will fail. For example, the acquireLock() method defined by the LockManager
you saw earlier will return false. The simplest and most effective way to handle
locking failures is for the business tier to return a status code or throw an excep-
tion indicating that the data could not be locked. Unlike when using database
transaction-level concurrency mechanisms, there is little point in having the busi-
ness tier automatically try again to claim the lock because locks are typically held
for a long time.

 The presentation tier can then display an error message telling the user to try
again later or perhaps give the user the opportunity to steal the lock. A rich client
such as an Ajax UI running in the user’s browser could, however, periodically re-
send the request that claims the lock.

 In theory, deadlocks can occur if use cases lock multiple objects. Each user
would be waiting for the other to release locks. The simplest way to prevent dead-
locks is for the application to release all locks when it fails to claim a lock and
require the user to start over from the beginning. Of course, whether this is possi-
ble depends on the details of the use case.

 Now that we have explored the various design issues you must address when
using the Pessimistic Offline Lock pattern, let’s learn how to implement it in a
domain model-based design.

520 CHAPTER 13

Using offline locking patterns
13.7 Using pessimistic offline locking in a domain model

In this section you will learn how to implement the Pessimistic Offline Lock pat-
tern with a lock manager. First we show the implementation of a simple lock man-
ager; after that we describe the business logic that uses it. For brevity, we’ll just
discuss the domain model version of the business logic because transaction scripts
would call the lock manager in the same way.

13.7.1 Implementing a lock manager with iBATIS

The LockManager interface, which you saw earlier in section 13.6.5, defines meth-
ods for acquiring, verifying, and releasing locks. It is called by the transaction
scripts and domain service methods to lock and unlock objects. For the reasons
outlined earlier, the implementation of the lock manager maintains locks in the
database. It claims locks by inserting a row into the OFFLINE_LOCK table and
releases a lock by deleting a row:

create table OFFLINE_LOCK (
 CLASS_ID VARCHAR2(100) NOT NULL,
 PK VARCHAR2(100) NOT NULL,
 OWNER VARCHAR2(100) NOT NULL,
 CONSTRAINT OFFLINE_LOCK_PK
 PRIMARY KEY (CLASS_ID, PK)
)

This table defines the following three columns:

■ CLASS_ID identifies the type of the object being locked.

■ PK is the primary key of the locked object.

■ OWNER is the owner of the lock.

Its primary key consists of the CLASS_ID and PK columns.
 The LockManager, which is shown in listing 13.3, is implemented using iBATIS

and uses the Spring SqlMapClientTemplate class to access the OFFLINE_LOCK table.

public class LockManagerIBatisImpl implements LockManager {

 private final SqlMapClientTemplate template;

 public LockManagerIBatisImpl(
 SqlMapClientTemplate sqlMapClientTemplate) {
 this.template = sqlMapClientTemplate;
 }

 private Map makeParameterMap(String classId,

Listing 13.3 LockManagerIBatisImpl

Using pessimistic offline locking in a domain model 521
 String pk,
 String owner) {
 Map map = new HashMap();
 map.put("classId", classId);
 map.put("pk", pk);
 map.put("owner", owner);
 return map;
 }

 public boolean acquireLock(String classId, String pk,
 String owner) {
 Map map = makeParameterMap(classId, pk, owner);
 try {
 template.insert("acquireLock", map);
 return true;
 } catch (DataIntegrityViolationException e) {
 return false;

 }
 }

 public boolean verifyLock(String classId, String pk,
 String owner) {
 Map map = makeParameterMap(classId, pk, owner);
 return new Integer(1).equals(template.queryForObject(
 "verifyLock", map));
 }

 public void releaseLock(String classId,
 String pk,
 String owner) {
 Map map = makeParameterMap(classId, pk, owner);
 int count = template.delete("releaseLock", map);
 if (count != 1)
 throw new ApplicationRuntimeException(
 "Count should ==1 " + count);
 }
}

The acquireLock() method acquires a lock by inserting a row into the
OFFLINE_LOCK table using the following SQL statement:

INSERT INTO OFFLINE_LOCK(CLASS_ID, PK, OWNER) VALUES(?,?,?)

It executes the INSERT statement by calling SqlMapClientTemplate.insert(). It
then catches the DataIntegrityViolationException, which is thrown if the lock
already exists, and maps it to a LockManagerException.

522 CHAPTER 13

Using offline locking patterns
 The verifyLock() method verifies that the caller owns the lock by executing
the following SQL statement:

SELECT count(*)
FROM OFFLINE_LOCK
WHERE CLASS_ID = ? AND PK = ? AND OWNER = ?

It executes the SQL SELECT by calling SqlMapClientTemplate.select(). It throws a
LockManagerException if the lock does not exist or is owned by someone else.

 The releaseLock() method releases a lock by executing the following SQL
statement:

DELETE FROM OFFLINE_LOCK WHERE CLASS_ID = ? AND PK = ? AND OWNER = ?

It executes this DELETE statement by calling SqlMapClientTemplate.delete(). It
throws a LockManagerException if the lock does not exist or is owned by someone else.

 This is a very simple implementation of the lock manager. A more elaborate
implementation could, for example, track when locks are acquired and allow for
old locks to be stolen.

13.7.2 Implementing the domain service

Now that you have seen how to implement a lock manager, let’s look at an exam-
ple of business logic that uses it. The business logic of the Modify Order use case
is implemented by the ModifyOrderService. The ModifyOrderService is a domain
model service that is invoked by either a POJO façade or the presentation tier. It
calls various other domain objects, including Order and OrderRepository, and
uses the LockManager to lock and unlock orders.

 ModifyOrderService defines several methods that handle requests from the
presentation tier, including:

■ getOrderToModify() is called at the start of the use case when the user
decides to edit an order. It verifies that the order can be edited and then
locks it.

■ updateQuantities() is called when the user changes the line item quanti-
ties. It verifies that the order is still locked and saves the new quantities.

■ saveChangesToOrder() is called when the user saves her changes. It verifies
that the order is still locked, updates it, and then unlocks it.

■ cancelModifyOrder() is called when the user gives up editing the order. It
unlocks the order.

Because the process of editing an order is similar to the process of placing an
order, the ModifyOrderService uses a PendingOrder to keep track of the changes

Using pessimistic offline locking in a domain model 523
made by the user. At the start of the process, it creates a PendingOrder from the
Order and stores it in the database. When the user saves his changes, the Modify-
OrderService updates the Order with the changes. Figure 13.6 shows the design,

getOrderToModify()
saveChangesToOrder()
cancelModifyOrder()
updateQuantities()
...

<<interface>>
ModifyOrderService

ModifyOrderResult getOrderToModify(orderId)
ModifyOrderResult saveChangesToOrder(orderId, pendingOrderId)
ModifyOrderResult cancelModifyOrder(orderId, pendingOrderId)
ModifyOrderResult updateQuantities(orderId, pendingOrderId,
quantities)
...

ModifyOrderServiceImpl

modify()

Orderfind()

<<interface>>
OrderRepository

updateQuantities(...)
updateDeliveryInfo(...)
...

PendingOrder

createPendingOrder()
deletePendingOrder()

<<interface>>
Pending

OrderRepository

acquireLock()
verifyLock()
releaseLock()

<<interface>>
LockManager

status

ModifyOrder
Result

Figure 13.6
LockManager-based domain model

524 CHAPTER 13

Using offline locking patterns
which consists of the ModifyOrderService, ModifyOrderServiceImpl (which imple-
ments the ModifyOrderService interface), and the classes that it calls.In addition
to the ModifyOrderService and ModifyOrderServiceImpl, the design consists of
these other classes:

■ OrderRepository loads the Order.

■ PendingOrderRepository creates, loads, and deletes the PendingOrder.

■ LockManager maintains the locks in the database.

■ PendingOrder stores the changes made to the Order.

■ Order is the order being edited.

■ ModifyOrderResult is returned by the ModifyOrderService.

There are lots of details of the business logic that you do not need to know about
to understand how the Pessimistic Offline Lock pattern works, so we’ll focus just
on the ModifyOrderService class and how it interacts with the lock manager. Check
out the online source code if you want to see the details of the other classes.
ModifyOrderService is an interface that specifies the methods that can be invoked
by the POJO façade or the presentation tier:

public interface ModifyOrderService {
 public ModifyOrderServiceResult getOrderToModify(String caller,
 String orderId);

 public ModifyOrderServiceResult updateDeliveryInfo(
 String caller, String orderId, String pendingOrderId,
 Address deliveryAddress, Date deliveryTime);

 public ModifyOrderServiceResult updateQuantities(String caller,
 String orderId, String pendingOrderId, int[] quantities)
 throws InvalidPendingOrderStateException;

 public ModifyOrderServiceResult saveChangesToOrder(
 String caller, String orderId, String pendingOrderId);

 public ModifyOrderServiceResult cancelModifyOrder(
 String caller, String orderId, String pendingOrderId);
}

Each method has a caller parameter, which is used as the lock owner. It could be
the HttpSession ID or the user ID. The other method parameters include the IDs
of orders and pending orders as well as values entered by the user, such as the
delivery time and the line item quantities.

 The ModifyOrderService interface is implemented by the ModifyOrderServi-
ceImpl class, which is shown in listing 13.4. ModifyOrderServiceImpl fulfills

Using pessimistic offline locking in a domain model 525
its responsibilities by calling various classes such as Order, OrderRepository, Pend-
ingOrder, and PendingOrderRepository. Each of its methods also calls the Lock-
Manager to acquire locks, to verify that locks are still held, and to release locks.
They pass the name of the Order class, order ID, and the caller as arguments to
the LockManager.

public class ModifyOrderServiceLockManagerImpl implements
 ModifyOrderService {

 private PendingOrderRepository pendingOrderRepository;

 private OrderRepository orderRepository;

 private LockManager lockManager;

 private RestaurantRepository restaurantRepository;

 public ModifyOrderServiceLockManagerImpl(
 OrderRepository orderRepository,
 PendingOrderRepository pendingOrderRepository,
 RestaurantRepository restaurantRepository,
 LockManager lockManager) {
 this.pendingOrderRepository = pendingOrderRepository;
 this.orderRepository = orderRepository;
 this.restaurantRepository = restaurantRepository;
 this.lockManager = lockManager;
 }

 public ModifyOrderServiceResult getOrderToModify(String caller,
 String orderId) {
 if (lockManager
 .acquireLock(Order.class.getName(),
 orderId,
 caller)) {
 Order order = orderRepository.findOrder(orderId);
 PendingOrder pendingOrder =
 createPendingOrder(order);
 return new ModifyOrderServiceResult(
 ModifyOrderServiceResult.OK,
 pendingOrder);
 } else {
 return new ModifyOrderServiceResult(
 ModifyOrderServiceResult.ALREADY_LOCKED);

 }
 }

Listing 13.4 ModifyOrderServiceImpl

B Creates
ModifyOrderServiceLock
ManagerImpl

C Locks
Order

D Creates
PendingOrder

E Returns
ModifyOrderServiceResult

526 CHAPTER 13

Using offline locking patterns
 protected PendingOrder createPendingOrder(Order order) {
 Address deliveryAddress = order.getDeliveryAddress();
 Date deliveryTime = order.getDeliveryTime();
 Restaurant restaurant = order.getRestaurant();
bbbbList orderLineItems = order.getLineItems();
 PendingOrder pendingOrder = pendingOrderRepository
 .createPendingOrder(deliveryAddress, deliveryTime,
 restaurant, orderLineItems);
 return pendingOrder;
 }

 public ModifyOrderServiceResult updateDeliveryInfo(
 String caller, String orderId, String pendingOrderId,
 Address deliveryAddress, Date deliveryTime) {

 if (lockManager
 .verifyLock(Order.class.getName(),
 orderId,
 caller)) {

 PendingOrder pendingOrder
 = pendingOrderRepository
 .findPendingOrder(pendingOrderId);

 int result =
 pendingOrder.updateDeliveryInfo(
 restaurantRepository,
 deliveryAddress,
 deliveryTime,
 false);

 return new ModifyOrderServiceResult(
 ModifyOrderServiceResult.OK, pendingOrder);
 } else {
 return new ModifyOrderServiceResult(
 ModifyOrderServiceResult.NOT_LOCKED);

 }
 }

 public ModifyOrderServiceResult updateQuantities(String caller,
 String orderId, String pendingOrderId, int[] quantities)
 throws InvalidPendingOrderStateException {
 if (lockManager.verifyLock(Order.class.getName(), orderId,
 bbbbcaller)) {
 PendingOrder pendingOrder = pendingOrderRepository
 .findPendingOrder(pendingOrderId);
 pendingOrder.updateQuantities(quantities);
 return new ModifyOrderServiceResult(
 ModifyOrderServiceResult.OK, pendingOrder);
 } else {

F Verifies
Order is locked

G Updates
delivery info

H Returns
ModifyOrderServiceResult

Using pessimistic offline locking in a domain model 527
 return new ModifyOrderServiceResult(
 ModifyOrderServiceResult.NOT_LOCKED);

 }
 }

 public ModifyOrderServiceResult saveChangesToOrder(
 String caller, String orderId, String pendingOrderId) {
 if (lockManager
 .verifyLock(Order.class.getName(),
 orderId,
 bbbbbbbbbbbbbbcaller)) {
 Order order = orderRepository.findOrder(orderId);
 PendingOrder pendingOrder = pendingOrderRepository
 .findPendingOrder(pendingOrderId);

 order.modify(pendingOrder
 .getDeliveryAddress(),
 pendingOrder
 .getDeliveryTime(),
 pendingOrder
 .getRestaurant(),
 pendingOrder
 .getPaymentInformation(),
 pendingOrder.getLineItems());

 lockManager
 .releaseLock(Order.class.getName(),
 orderId,
 caller);
 return new ModifyOrderServiceResult(
 ModifyOrderServiceResult.OK, order);
 } else {
 return new ModifyOrderServiceResult(
 ModifyOrderServiceResult.NOT_LOCKED);

 }
 }

 public ModifyOrderServiceResult cancelModifyOrder(
 String caller, String orderId, String pendingOrderId) {
 if (lockManager
 .verifyLock(Order.class.getName(),
 orderId,
 caller)) {
 Order order = orderRepository.findOrder(orderId);
 lockManager
 .releaseLock(Order.class.getName(),
 orderId,
 caller);
 return new ModifyOrderServiceResult(

I Verifies Order
is locked

J Updates Order

Unlocks Order1)

Verifies Order
is locked

1!

Unlocks
Order

1@

528 CHAPTER 13

Using offline locking patterns
 ModifyOrderServiceResult.OK, order);
 } else {
 return new ModifyOrderServiceResult(
 ModifyOrderServiceResult.NOT_LOCKED);

 }
 }

}

Let’s look at the details:

The constructor takes a PendingOrderRepository, an OrderRepository, a Restau-
rantRepository, and a LockManager as parameters and stores them in fields.

The getOrderToModify() method first locks the Order by calling LockMan-
ager.acquireLock().

The method then finds the Order by calling the OrderRepository and creates a
PendingOrder.

getOrderToModify() returns a ModifyOrderServiceResult.

The updateDeliveryInfo() method first verifies that the order is still locked by
calling LockManager.verifyLock().

The method finds the PendingOrder and calls PendingOrder.updateDeliveryInfo().

updateDeliveryInfo() returns a ModifyOrderServiceResult.

The saveChangesToOrder() method first verifies that the order is still locked.

The method updates the Order with the changes made by the user.

It then unlocks the Order and returns a ModifyOrderServiceResult.

The method cancelModifyOrder() verifies that the Order is still locked.

It then unlocks the Order by calling LockManager.releaseLock().

As you can see, the business logic implemented by the domain model service
makes calls to the LockManager. The getOrderToModify() method, which is called
at the start of the use case, attempts to lock the order. If it cannot, then it returns
a status code indicating that the order is locked by another user. The user inter-
face can then display an error message to the user telling them to try again later.

B

C

D

E

F

G

H

I

J

1)

1!

1@

Using pessimistic offline locking in a domain model 529
 Methods such as updateDeliveryInfo() and updateQuantities(), which are
called during the use case, verify that the order is still locked. The saveChanges-
ToOrder() and cancelModifyOrder(), which are called at the end of the use case,
first verify that the order is still locked and then unlock it.

 Let’s now see how using the Pessimistic Offline Lock pattern to implement the
Modify Order use case affects the implementation of other use cases.

13.7.3 Adapting the other use cases

We saw in section 13.5.3 that one consequence of using the Pessimistic Offline
Lock pattern is that all use cases that update the same shared data must lock and
unlock objects. In the Food to Go application, this means that if the implementa-
tion of the Modify Order use case uses a LockManager, then the other use cases
that update orders must do so as well. This section examines the impact that this
has on the Send Orders to Restaurant and Acknowledge Order use cases.

Changing the Send Orders to Restaurant use case
Even though the Send Orders to Restaurant use case consists of a single database
transaction, it must use the LockManager to lock the orders before sending them
and unlock them afterward. Listing 13.5 shows the domain model version of the
business logic that does this.

public class DomainRestaurantNotificationService

bbpublic boolean sendOrders(String caller) {
bbbbCollection orders =orderRepository.findOrdersToSendToRestaurant();
bbbbCollection lockedOrders = new ArrayList();
bbbbfor (Iterator it = orders.iterator(); it.hasNext();) {
 Order order = (Order) it.next();
bbbbbbbif(!lockOrder(caller,order))
 continue;

 lockedOrders.add(order);

bRestaurant restaurant = order.getRestaurant();
 NotificationDetails notificationDetails = notificationGateway
 .sendOrder(order);
 Date timestamp = notificationDetails.getTimestamp();
 String messageId = notificationDetails.getMessageId();
 order.noteSent(messageId, timestamp);
 }
 unlockOrders(lockedOrders);
 return !orders.isEmpty();
 }

Listing 13.5 DomainRestaurantNotificationService

Locks the order

Skips already locked orders

Remembers locked order

Unlocks previously
locked orders

530 CHAPTER 13

Using offline locking patterns
bbprivate boolean lockOrder(String caller, Order order) {
 return lockManager.acquireLock(Order.class.getName(),
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbborder.getId(), caller);
bb}

bbprivate void unlockOrders(String caller, Collection orders) {
 for (Iterator it = orders.iterator(); it.hasNext();) {
 Order order = (Order) it.next();
 lockManager.releaseLock(Order.class.getName(), order.getId(),
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbcaller);
 }

…
}

The sendOrders() method iterates through the result of the query and tries to
lock each order. It ignores orders that cannot be locked. After locking the order,
it sends it to the restaurant and updates it. Before returning, this method unlocks
all of the locked orders. The code reads objects before locking and so could
potentially read stale data and overwrite changes made by other transactions. It
must, for the reasons we saw in section 13.6.5, use one of the database transaction-
level concurrency mechanisms such as optimistic locking to avoid doing this.

 One way to improve this code is to retrieve the orders with a query that ignores
the ones that are locked. The application must still lock the orders it retrieves to
prevent another transaction from attempting to update them, but excluding the
locked orders from the query prevents the application from loading them unnec-
essarily. The transaction script-based implementation of the Send Orders to Res-
taurant use case can use a SQL query that does a join between the
PLACED_ORDER and OFFLINE_LOCK tables. The domain model version would
need to map the OFFLINE_LOCK table to a class so that it can use a persistence
framework query that excludes locked orders.

Changing the Acknowledge Order use case
The Acknowledge Order use case is another use case that updates orders. There
are a couple of different ways we can change the Acknowledge Order use case
code to work with pessimistic offline locking. One option is to implement this use
case using the Pessimistic Offline Locking pattern instead of the Optimistic
Offline Locking pattern. Doing this is easy, but it means that another set of users
(i.e., restaurants) will hold locks on orders. Furthermore, because unlike customer
service representatives they are outside of the direct control of the company, these

Using pessimistic offline locking in a domain model 531
users might be less diligent in exiting the application gracefully and unlocking
orders. As a result, there is an increased chance of orders remaining locked.

 An alternative approach is for the implementation of the Acknowledge Order
use case to continue to use the Optimistic Offline Lock pattern with some minor
enhancements. The AcknowledgeOrderService verifies that the order is unlocked
at the start of the use case and locks the order in the final database transaction
while updating it. The Optimistic Offline Lock pattern detects when an order was
changed by another transaction, and locking the order while updating it ensures
that it is safe to do so. This approach avoids having the restaurant user holding
onto long-term pessimistic offline locks but does make the code a little more com-
plex. Here is an excerpt of the code for the AcknowledgeOrderService, which
implements the business logic for this use case. The changes to the getOrderTo-
Acknowledge() and acknowledgeOrder() methods appear in bold.

public class DetachingAcknowledgeOrderServiceWithLockImpl implements
 DetachingAcknowledgeOrderService {

 public AcknowledgeOrderResult getOrderToAcknowledge(
 String orderId) {
 Order order = orderRepository.findOrder(orderId);
 Order detachedOrder = attachmentManager.detach(order);
 if (order.isAcknowledgable()) {
 if (lockManager
 .isLocked(Order.class,
 order.getId()))
 return new AcknowledgeOrderResult(
 AcknowledgeOrderResult.LOCKED,
 detachedOrder);
 else
 return new AcknowledgeOrderResult(
 AcknowledgeOrderResult.OK, detachedOrder);
 } else
 return new AcknowledgeOrderResult(
 AcknowledgeOrderResult.ILLEGAL_STATE,
 detachedOrder);
 }

 public AcknowledgeOrderResult acknowledgeOrder(
 Order detachedOrder, String owner) {
 if (!lockManager
 .acquireLock(Order.getName(),
 detachedOrder
 .getId(),
 owner))
 return new AcknowledgeOrderResult(
 AcknowledgeOrderResult.LOCKED, detachedOrder);

Verifies order
not locked

Locks order

532 CHAPTER 13

Using offline locking patterns
 try {
 Order order = attachmentManager.attach(detachedOrder);
 return new AcknowledgeOrderResult(
 AcknowledgeOrderResult.OK, detachedOrder);
 } finally {
 lockManager
 .releaseLock(Order.class.getName(),
 detachedOrder.getId(),
 owner);
 }
 }

…

The getOrderToAcknowledge() method calls the LockManager to verify that the
order is unlocked. The isLocked() method is a new LockManager method, which
returns true if the specified object is locked by anyone. The acknowledgeOrder()
method has an owner parameter, which is passed to the LockManager. It calls
acquireLock() to lock the order before attaching the order. Afterwards, it calls
releaseLock() to unlock the order. If either method fails to acquire the lock, it
returns a status code of AcknowledgeOrderResult.LOCKED, which tells the presenta-
tion tier that the order is locked and cannot be changed.

 As you can see, using the Pessimistic Offline Lock pattern in one use case
requires the other use cases that access the same data to use it as well. You might
even have to change existing code to call the lock manager if you implement a
new use case that requires the Pessimistic Offline Lock pattern. Although these
code changes can be substantial, they are unavoidable if you must prevent two
users from editing the same data simultaneously.

 Using the Pessimistic Offline Lock pattern ensures that changes made to an
order will not be lost. The customer service representative will be able to save the
changes requested by the customer—and another happy customer will enjoy a
delicious meal.

13.8 Summary

There are two ways to handle concurrent updates in edit-style use cases that read
data in one database transaction and update it in another. One option is to use the
Optimistic Offline Lock pattern, which verifies that the data in the database is
unchanged since it was first read at the start of a use case. One way to implement
this pattern is to store the original version number or timestamp of the data being
edited as part of the session state and to verify that it is unchanged when updating it.

Unlocks order

Summary 533
 Another way to implement the Optimistic Offline Lock pattern in a JDO or
Hibernate application is to use detached objects. The business tier detaches the
object being edited and returns it to the presentation tier, which stores it as part
of the session state. Later, the presentation tier updates the detached object with
the user’s changes and passes it back to the business tier, which attaches it. Hiber-
nate and JDO verify that the rows in the database corresponding to the object are
unchanged when saving it.

 One drawback of the Optimistic Offline Lock pattern is that, although it pre-
vents concurrent updates, it does not prevent to users from editing the same data
at the same time. One user will succeed and the other will have to start over. Con-
sequently, if the probability of conflicts is high or the cost of redoing the work is
large, then you should use the Pessimistic Offline Lock pattern. This pattern locks
the data being edited for the duration of the use case and prevents it from being
updated by other users, which guarantees that users can save their changes. The
Pessimistic Offline Lock pattern uses application-level style locks, which are stored
in the database in either a separate table or in the same table as the data. There is
one challenge with using this pattern: if one use case uses it, then all others that
update the same data must also use it, which is potentially error-prone. But this is
something you just have to deal with if you want to have a usable application.

references
[Acegi] Acegi Security System for Spring. http://acegisecurity.sourceforge.net.

[Alur 2003] Alur, D., Crupi, J., and Malks, D. 2003. Core J2EE Patterns: Best Practices and
Design Strategies, 2nd ed. Upper Saddle River, NJ: Prentice Hall PTR.

[Bauer 2005] Bauer, C. and King, G. 2004. Hibernate in Action. Greenwich, CT: Manning.

[Beck 2002] Beck, K. 2002. Test-Driven Development: By Example. Boston: Addison-Wesley
Professional.

[Begin, forthcoming] Begin, C. Forthcoming. iBATIS in Action. Greenwich, CT: Manning.

[Buschmann 1996] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M.
1996. Pattern-Oriented Software Architecture, Volume 1: A System of Patterns. New York: John
Wiley & Sons.

[Cactus] Jakarta Cactus. http://jakarta.apache.org/cactus/.

[Crane 2005] Crane, D., and Pascarello, E. 2005. Ajax in Action. Greenwich, CT: Manning.

[DBCP] Apache Jakarta project. http://jakarta.apache.org/commons/dbcp/.

[DbUnit] DbUnit project. http://dbunit.sourceforge.net.

[EasyMock] EasyMock project. www.easymock.org/.

[Eclipse] Eclipse Foundation. www.eclipse.org.

[EHCache] Ehcache project. http://ehcache.sourceforge.net/.

[EJB 3 June 2005] EJB3 Expert Group. JSR 220: Enterprise JavaBeans 3.0. www.jcp.org/
en/jsr/detail?id=220.2005.
535

536 REFERENCES
[Evans 2003] Evans, E. 2003. Domain-Driven Design: Tackling Complexity in the Heart of Software.
Boston: Addison-Wesley Professional.

[Fowler 1999] Fowler, M. 1999. Refactoring: Improving the Design of Existing Code. Boston: Addi-
son-Wesley Professional.

[Fowler 2002] Fowler, M. 2002. Patterns of Enterprise Application Architecture. Boston: Addison-
Wesley Professional.

[Fowler Anemic] Fowler, M. www.martinfowler.com/bliki/AnemicDomainModel.html.

[Fowler POJO] Fowler, M. www.martinfowler.com/bliki/POJO.html.

[Gang of Four] Gamma, E., Helm, R., Vlissides, J., and Johnson, R. 1995. Design Patterns –
Elements of Reusable Object-Oriented Software. Boston: Addison-Wesley Professional.

[Gray 1993] Gray, J. and Reuter, A. 1993. Transaction Processing: Concepts and Techniques. San
Mateo, CA: Morgan Kaufmann.

[Hibernate injection] Hibernate community. http://hibernate.org/182.html.

[HSQLDB] HSQL database engine. www.hsqldb.org.

[Husted 2002] Husted, T. Dumoulin, C., Franciscus, G., Winterfeldt, D., and McClanahan, C.
2002. Struts in Action: Building Web Applications with the Leading Java Framework. Greenwich,
CT: Manning.

[JBossCache] JBoss Cache. www.jboss.org/products/overview/jbosscache.

[jMock] jMock project. www.jmock.org/.

[JPOX] JPOX project. www.jpox.org/index.jsp.

[JSR12] JSR 12, Java Data Objects (JDO) Specification. www.jcp.org/en/jsr/detail?id=12.

[JSR243] JSR 243: Java Data Objects 2.0 – An Extension to the JDO Specification.
www.jcp.org/en/jsr/detail?id=243.

[JUnit] JUnit.org. www.junit.org/index.htm.

[Laddad 2003] Laddad, R. AspectJ in Action. 2003. Greenwich, CT: Manning.

[Larman 2004] Larman, C. 2004. Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design and Iterative Development, 3rd ed. Upper Saddle River, NJ: Prentice Hall
PTR.

[Mann 2005] Mann, K. 2005. JavaServer Faces in Action. Greenwich, CT: Manning.

[Marinescu 2002] Marinescu, F. 2002. EJB Design Patterns: Advanced Patterns, Processes and Idioms.
Hoboken, NJ: John Wiley and Sons, Inc.

[Massol 2003] Massol, V. JUnit in Action. 2003. Greenwich, CT: Manning.

[OpenSessionInView] Hibernate community. www.hibernate.org/43.html.

REFERENCES 537
[PicoContainer] PicoContainer project. www.picocontainer.org/.

[Rainsberger 2004] 2004. Rainsberger, J. B. JUnit Recipes: Practical Methods for Programmer Test-
ing. Greenwich, CT: Manning.

[Russell 2003] Russell, C. 2003. Java Data Objects. Sebastopol, CA: O’Reilly Media.

[SwarmCache] SwarmCache project. http://swarmcache.sourceforge.net/.

[Tapestry] Jakarta Tapestry. http://jakarta.apache.org/tapestry.

[Tate 2003] 2003. Tate, B., Clark, M., Lee, B., and Linskey, P. Bitter EJB. Greenwich, CT:
Manning.

[TORPEDO] Torpedo Group. www.torpedo-group.org.

[Tow 2003] Tow, D. 2003. SQL Tuning. Sebastopol, CA: O’Reilly Media.

[Walls 2005] Walls, C. and Breidenbach, R. 2005. Spring in Action. Greenwich, CT: Manning.

[Wirfs-Brock 2002] Wirfs-Brock, R. and McKean, A. 2002. Object Design: Roles, Responsibilities,
and Collaborations. Boston: Addison-Wesley Professional.

[XmlUnit] XMLUnit project. http://xmlunit.sourceforge.net.

index
A

abandoned sessions, Optimistic Offline Lock
pattern 494

AbstractCouponImpl
and Hibernate 208
and JDO 157

AccountDAO 6
AccountRepository 18
Acegi Security

implementing security with 249
overview 262

Acknowledge Order use case 490
example scenario 491
impact of the Pessimistic Offline Lock

pattern 530
implementing with Hibernate 495
implementing with JDO 495
overview 56

acknowledgeOrder() 502
AcknowledgeOrderResult 502
AcknowledgeOrderService 501
AcknowledgeOrderServiceImpl 502
acquireLock() 514
addEntity() 449
addField() 187
addGroup() 186
adding behavior to a domain model 69–79
addJoin() 449
Address class 66
anemic domain model 10
annotation 363
anonymous callback class. See callback class
Ant, JDO bytecode enhancer 158
AOP. See Spring AOP

application
identity 151
responsibilities of 72

application server, replacing with a web
container 27

application transaction. See long transaction
application-level locking 508
Aspect-Oriented Programming. See Spring AOP
assertAllFieldsMapped()

Hibernate version 214
JDO version 160

assertApplicationIdentity(), JDO version 160
assertClassMapping()

Hibernate version 214
JDO version 160

assertDatabaseSchema() 161
Hibernate version 215

assertField(), Hibernate version 214
assertIdField()

Hibernate version 214
JDO Version 160

assertXpathEvaluatesTo() 139
association. See mapping
attachCopy() 498
@AttributeOverride 376

B

BankingTransaction 15
BankingTransactionRepository 18
BasicDataSource, example configuration 356
bean factory 21
BeanNameAutoProxyCreator

example configuration 23
example of use 22
539

540 INDEX
BeanNameAutoProxyCreator (continued)
using to apply an interceptor to a POJO

façade 282
begin() 120
beginTransaction() 119–120
bloated session state 499
Burlap 263
business logic

design options 32–34
encapsulating with a POJO façade 244–250
implementing simple business logic 324

business logic encapsulation
with an EJB 3 session bean 385–388
options 37–41
using a POJO façade 39
using an EJB session façade 38
using an exposed domain model 40
using the Exposed Domain Model pattern

290–294
business logic organization

options 35, 37
procedural approach. See Transaction Script

pattern
with the Transaction Script pattern 318–324
using the Domain Model pattern. See Domain

Model pattern
using the Transaction Script pattern.

See Transaction Script pattern
business transaction. See long transaction
bytecode enhancer, in JDO 158

C

<cache> element 240
caching overview. See process-level caching;

query cache
callback class

example of a named callback 130
example of an anonymous callback 130
improving testability with named callback

classes 130
problems with anonymous 129

CannotAcquireLockException 469
CannotSerializeTransactionException 469
@Cascade

JBoss extension 370
cascade attribute 203, 205–206
CascadeType.DELETE_ORPHAN

JBoss extension 370
checkConsistency() 500
checkout request 72

<class>
detachable attribute 505
optimistic-lock attribute 479

class, well-designed 36
<class> element

in JDO metadata 152
class hierarchy, persisting with EJB 3 378
classic EJB architecture. See heavyweight approach
clear() 303
close() 119
coarse-grained API, benefits 38
Coarse-Grained Lock pattern 512
collaborator 69

challenges caused by 76
determining 70

commit() 120
defined by PlatformTransactionManager 259

component collection, in Hibernate 204
<component> element 227
<composite-element> element 204
concurrency

in databases 452
See also database concurrency

ConcurrencyFailureException 469
recovering from 483

concurrent access to shared data 452
concurrent updates 453–461, 472–486

signalling failures 468
in Hibernate 482
in JDO 477

Configuration 214
generateSchemaUpdateScript() 216
getClassMapping() 214
openSessionFactory() 214

connection management
in a POJO façade 257
using a servlet filter 295

connection pool 358
using BasicDataSource 356

constructor injection 26
domain model service example 83
and entities 89
and object/relational mapping frameworks 89

container-managed transactions, replacing with
Spring-managed transactions 20

ContextLoaderServlet 314
Coupon 66, 103

mapping with Hibernate 208
persisting with EJB 3 378
persisting with JDO 156

createCriteria() 427
createEntityManager() 367

INDEX 541
createEntityManagerFactory() 367
createNamedQuery 381
createNamedQuery() 119, 367
createQuery() 119, 367
createSQLQuery() 448
Criteria

scroll() 437
setchFetchMode() 430
setFirstResult() 437
setMaxResults 437

criteria query 120, 427
eager loading 430
implementing paging 437

currentTransaction() 119–120

D

DAO. See data access object
data access object

iBATIS example 418–424
implementing with iBATIS SQL Maps 337–354
Spring 337, 354
and the Transaction Script pattern 320

data transfer object
defined 10
implementing 335
replacing with a detached object 18
and the Transaction Script pattern 319

DataAccessException 469
database, in-memory. See in-memory database
database access

design options 32–34
with EJB 3 365
with Hibernate and JDO 117, 125
with iBATIS SQL Maps 42
with an object/relational mapping

framework 108–116
problems with using JDBC directly 41
using an object/relational mapping

framework 43
database concurrency 452

Optimistic Offline Lock pattern 46
options 44–46
overview 44–46
Pessimistic Offline Lock pattern 47

Database Connection Pool. See DBCP
database schema

testing in Hibernate 215
testing in JDO 161

DataSource, configuring the isolation level 467

DataSourceTransactionManager 260, 354
example configuration 356

datastore identity 153
datastore transactions 474

using 476
<datastore-identity> element 154
DBCP 358

configuring the isolation level 467
DbUnit 136, 351
default fetch group 184

attribute 185
delete() 119

defined by HibernatePersistenceTests 216
deletePersistent() 119

defined by JDOPersistenceTests 164
denormalization 415

and object/relational mapping framework
116, 434

reasons to 116
dependency injection 26

@EJB 3 annotation 365
assembling an EJB 3 application 390
assembling applications with 25–27
constructor injection domain model service

example 83
See also constructor injection

in EJB 3 365
entities 89
object/relational mapping frameworks 89
as a replacement for JNDI 26
setter injection. See setter injection

@Depends, JBoss extension 396
deployment, of a POJO application 27
design, improving by refactoring 75
design decision 48, 51

overview 33
summary 47

detachable attribute 505
detachCopy() 254, 498
detachCopyAll() 254
detached object

attaching and detaching in JDO and
Hibernate 498

avoiding by using the Exposed Domain Model
pattern 290

bloated session state 499
configuring detachable Hibernate objects 505
configuring detachable JDO objects 504
detaching in a façade 19
detaching in EJB 3 387
detaching in Hibernate 273
detaching in JDO 275

542 INDEX
detached object (continued)
drawbacks of 249
edit-style use cases 497
in EJB 3 368
encapsulating detachment code 505
in Hibernate 255
Hibernate example 507
how to use 254
in JDO 254
JDO example 506
Optimistic Offline Lock pattern 497
overview 18, 114
problems with 290
storing in HttpSession 498

development
accelerating by using the Exposed Domain

Model pattern 293
simplifying by using a POJO façade 247
simplifying development by using POJOs 16

<discriminator> element
in Hibernate 208
in JDO 157

@DiscriminatorColumn 379
discriminatorValue member 379
distributed transaction

initiated by a remote client 248
dogma, avoiding 5
doInTransaction()

defined by HibernatePersistenceTests 216
defined by JDOPersistenceTests 163

domain model
adding behavior 69–79
anemic 10
developing 68–79
encapsulating with adapters 253
encapsulating with interfaces 251
entity. See entity
example of implementing 80–92
factory. See factory
identifying classes, attributes and

relationships 69
implementing with EJB 3 372–385
mapping to a database 96–108
persisting with EJB 3 372–380
persisting with Hibernate 212–227
persisting with JDO 159–173
place in architecture 63
repository. See repository
roles 66–68
service. See service
testing a service 84
testing an entity 91

testing with EJB 3 382–385
value object. See value object
See also persistent domain model

Domain Model pattern
example structure 37
overview 36, 62–68

domain model service
converting to an EJB 3 session bean 391
detached objects example 502
Pessimistic Offline Lock pattern example 525

DomainRestaurantNotificationService 473
downcasting, and Hibernate 209
DTO. See data transfer object
dumb data objects 35
dynamic mapped statement

example 421
overview 413

dynamic paged queries
in EJB 3 401
Hibernate example 442–446
implementing 424–438
JDO example 438–442

E

eager loading 428
benefits of 113
configuring 142–144, 235
difficulty using 113
and Hibernate 235–240
Hibernate criteria queries 430
and JDO fetch groups

184–191
overview 112
problems caused by excessive eager loading 113
using fetch groups 429
using joins 113
See also lazy loading

EasyMock 78
Eclipse plugin, JDO bytecode enhancer 159
edit-compile-debug cycle

accelerating by using POJOs 16
problems with long cycles 10

edit-style use case
handling concurrency 490
implementing with detached objects 497

EHCache 240, 535
@EJB 365
EJB 3

application assembly 389–400
automatic detachment 371
collections of non-entities 368

INDEX 543
EJB 3 (continued)
compared to EJB 2 362–368
concurrency options 403
deleting orphans 369
dependency injection 365, 390–392
dependency injection limitations 371
detached objects 368, 387
development environment complexity 372
domain model service as a session bean 391
dynamic paged queries 401
EJB QL query example 382
encapsulating business logic 385–388
entity bean example 373, 376
entity beans 362
Exposed Domain Model pattern 400
fetch joins 370
Hybrid heavyweight and POJO approach 32
implementing a façade 385–388
implementing repositories 380–382
injecting Spring beans 392–398
injecting the EntityManager into

repositories 397
integrating with Spring dependency injection

392–398
key improvements 362–368
limitations 368–372, 379
mapping a domain model 372–380
mapping an interface 378
mapping lists 369
object/relational mapping 365
object/relational mapping rules 364
overview 361–372
persistence API 366
persisting a class hierarchy 378
promise of 11
repositories as session beans 392
session bean example 386
session façade 385
simplified configuration 363
testing domain model 382–385
Transaction Script pattern 401
using Spring dependency injection 398

EJB 3 annotation
@AttributeOverride 376
@DiscriminatorColumn 379
@EJB 365
@Embedded 376
@Entity 363
@Id 364
@Inheritance 379
@Local 363
@ManyToOne 364

@NamedQuery annotation 382
@OneToMany 364
@OrderBy 369
@PersistenceContexts 396
@PostConstruct 400
@Resource 396
@Stateless 363

EJB container
eliminating by using a POJO façade 247
eliminating with the Exposed Domain Model

pattern 293
EJB QL query, example 382
EJB. See Enterprise JavaBeans
EJB session façade, overview 38
EJB3PendingOrderPersistenceTests 383
EJB3PendingOrderRepository 392
EJB3PlaceOrderFacadeResultFactory 387
EJB3RestaurantRepository 380
@Embedded 376
Embedded Value pattern 98
encapsulation

issues with POJO façade 250
issues with the Exposed Domain Model

pattern 293
enterprise application

development challenges 7
example architecture 33

Enterprise JavaBeans
avoiding entity beans 7
disillusionment with 5
EJB 3 compared to EJB 2 362–368
history of 5
inhibiting test-driven development 75
limitations of entity beans 9

Enterprise JavaBeans (contined)
making development for difficult 7
pain of development 10
POJOs as an alternative 12
problems 7–11
reasons for a procedural design 9
session façade example 6
session façade with EJB 3 385
typical application architecture 6
when to use 12

@Entity 363
entity

constructor injection 89
defined 67
example test 91
implementing 87–92

544 INDEX
entity (continued)
mocking 84
persisting with EJB 3 372–380
persisting with Hibernate 212–227
persisting with JDO 159–173
in Hibernate 202
See also Coupon; Order; PendingOrder;

Restaurant entity
EntityManager 366

createNamedQuery 381
createNamedQuery() 367
createQuery() 367
find() 381
injecting into repositories 397

EntityManagerFactory 367
createEntityManager() 367
example 383

EntityTransaction 367
example 383

eq() 79
evict, objects from PersistenceManagerFactory-

level cache 192
exception handling

in Hibernate 209
in a POJO façade 256

exception mapping, SqlMapClientTemplate 470
exclusive lock 513
exclusive write lock 512
execute(), defined by JDO Query 120
ExecuteFindOrdersQuery 441
ExecuteNamedQueryWithMapCallback 174
Exposed Domain Model pattern

benefits 293
compared to a POJO façade 247
connection management 295
drawbacks 293
encapsulation problems 293
example 304
with Hibernate 314–315
in EJB 3 400
with JDO 311–314
overview 40, 290–294
Spring beans for a domain service 310
transaction management 296–311
when to use 294

F

façade. See EJB Session Façade; POJO façade
factory, defined 67
fetch attribute 235

fetch group 184–191
alternative to. See projection query
configuring with Spring AOP 187
eager loading 429
partial object loading 432
using to detach objects 275

fetch join 237, 430
FetchConfiguration 186

addField() 187
<fetch-group> element 185
FetchPlan 186

addGroup() 186
setFetchGroup() 432

find() 381
findByNamedQueryAndNamedParam() 228
findOrCreatePendingOrder(), of the

PendingOrderRepository 82
findOrders()

defined by OrderDAO 419
defined by OrderRepository 438

FindOrdersHibernateCallback 444
FIRST_ROWS 415
flush() 479, 500
Food to Go application

architecture 49
business logic 51
database access 52
database schema 146
domain model 64
handling concurrency 52
high-level decisions 51–53
overview 48–50
requirements 48
users 48

FoodToGoDomainMappingTests, JDO version 164
FoodToGoHibernateMappingTests, Hibernate

version 217
FoodToGoSchemaTests 219
FoodToGoSchemaValidationTests 166
Fowler, Martin

anemic domain model 10
naming POJO 12

FreeShippingCoupon
and Hibernate 208
mapping to the database 103
persisting with JDO 156

fully isolated transactions 454

G

gatekeeper. See POJO façade
generateSchemaUpdateScript() 216

INDEX 545
<generator> element 200
getCause() 478
getClass(), defined by Hibernate 210
getFetchConfiguration() 187
getFetchPlan() 186
getNamedQuery(), to create an SQL query 448
getObject() 154
getObjectById() 119

defined by JDOPersistenceTests 164
getOrderToAcknowledge() 502
getResultList() 367
getTransaction() 259
getVersion 497
global transaction. See JTA transaction
Gold Master approach 352

H

heavyweight approach 32
Hessian 263
HessianServiceExporter 263
Hibernate 43

the class 210, 256
compared to Java Data Objects 124
component collections 204
components 198
concurrent updates 478–483
Configuration 214
configuring detachable objects 505
configuring eager loading 142
configuring the isolation level 481
criteria queries 427
defining the object/relational mapping 225
deleting orphans 203
denormalized schema 434
detached objects 124
detaching and attaching objects 255, 498
dynamic eager loading with fetch joins 237
eager loading 235–240
entities 198
entity collection 202
example HQL query 232
example of a persistent class 224
example of detaching and attaching objects 507
example of dynamic paged query 442–446
example of persistence tests 219
example of pessimistic locking 480
example of query generation 444
example repository 231, 443
exception handling issues 209
executing queries 120

Exposed Domain Model pattern 314–315
extra SQL statement when persisting a

collection 204
fetch attribute 235
fetch join 430
fields versus JavaBean properties 196
generating persistent identifiers 201
getClass() 210
identifier properties 201
implementing a result factory 273
implementing dynamic paged queries 424–438
implementing repositories 228–234
implementing the Acknowledge Order use

case 495
implementing the Modify Order use case 522
initialize() 256
lazy loading inheritance hierarchies 209
lazy property loading 211
and long transactions 495
mapping issues and decisions 196–208
mapping JavaBean properties 196
mapping one-to-many relationships 199, 202
native SQL queries 120, 448
nontransactional reads 301
object identity 200
optimistic locking 479
Optimistic Offline Lock Pattern 495–500
overview of API 118
overview of eager loading 121
overview of mapping 117
overview of performance tuning 141–146
overview of process-level caching 122
overview of transaction management API 120
paging 437
performance tuning 234–241
pessimistic locking 480–481
problems with downcasting 209
problems with instanceof 209
process-level caching 240
process-level caching. See process-level caching
projection queries 434
proxy 209
Query 118
query cache 123, 241
query generation 427
recovering from HibernateExceptions 303
Session 118
SessionFactory 118
signalling concurent update failures 482
surrogate key 201
testing an HQL query 233

546 INDEX
Hibernate (continued)
testing persistent objects 216–224
Transaction 118
using native SQL queries 446–449
using with Spring 126
writing tests for 213

Hibernate object/relational mapping document
cascade attribute 203, 205
<component> element 227
<composite-element> element 204
<discriminator> element 208
example 225
fetch attribute 235
<generator> element 200
<hibernate-mapping> 226
<id> element 200
<key> element 203
<list> element 203
<many-to-one> element 227
<property> element 197
<query> element 232
<subclass> element 208

hibernate.connection.isolation property 481
<hibernate-mapping> 226
HibernateMappingTests 140, 214
HibernateOrderRepositoryImpl 442
HibernatePendingOrderPersistenceTests 219
HibernatePersistenceTests 140, 216
HibernatePlaceOrderFacadeResultFactory 273
HibernateRestaurantRepositoryImpl 231
HibernateRestaurantRepositoryImplMockTest

229
HibernateSchemaTests 215

assertDatabaseSchema 215
HibernateTemplate 126

configuring to use a custom
SQLExceptionTranslator 482

example configuration 284
example of a repository using 231
exception mapping 482
findByNamedQueryAndNamedParam() 228
implementing a repository with 128
update() 498

HibernateTransactionManager 260
example configuration 284

HQL 119
example of 232

HSQLDB
obstacles to using for testing 138
using for testing 138

HTTP request, and POJO façade 264
HttpServletResponse, transaction rollbacks 298

HttpSession
bloated session state 499
storing detached objects 498
storing version number 496

I

iBATIS descriptor file
342

iBATIS SQL Maps 42
benefits 42
dynamic mapped statements 413
example DAO 418, 424
example of a dynamic mapped statement 421
implementing a lock manager 520
implementing concurrency 462
implementing DAOs 337–354
implementing dynamic paged queries 418–424
nested SELECT statement example 348
nested SQL statement 342
optimistic locking 464
overview 339
pessimistic locking 466
repeatable read transactions 466
serializable transactions 466
testing 343, 350
when to use 115

iBATIS SQL Maps configuration file
<sqlMapConfig> 358

iBATIS SQL Maps descriptor file
342, 422

example 348
writing 341

@Id 364
<id> element 200
identifying classes, attributes and relationships 69
identifying methods 72
Identity Map pattern 109
identity-type attribute

and application identity 152
implementing a domain entity 87–92
implementing a domain service method 80–86
<implements> element 157
Implicit Lock pattern 511
inconsistent reads 453

preventing with fully isolated transactions 453
<index> element 203
@Inheritance 379

discriminatorValue 379
initialize() 256
in-memory database 138
insert() 341

INDEX 547
instanceof, and Hibernate 209
interceptor. See proxy
interface

mapping with EJB 3 378
mapping with Hibernate 207
mapping with JDO 155

IntIdentity 153
<isNotEmpty> 422
isolated transactions

overview 44
isolation level

configuring 467
repeatable read 453
serializable 453
specifying in Hibernate 481
specifying in JDO 477

isRestaurantAvailable()
method of the Restaurant

Repository class 88
<iteration> 422

J

Java Data Objects
.jdo file 171
.orm file 171
API overview 118
application identity 151
bytecode enhancer 158
compared to Hibernate 124
configuring detachable objects 504
configuring eager loading 142
configuring optimistic locking 476
configuring the isolation level 477
configuring the transaction type 474
datastore identity 153
datastore transactions 474
default fetch group 184
defining a custom fetch group 185
defining the object/relational mapping 170
deleting orphans 173
denormalized schema 434
detached objects 124
detaching and attaching objects 254, 498, 506
dynamic paged query example 438–442
eager loading overview 121
executing queries 120
Exposed Domain Model pattern 311–314
fetch group 184–191
handling concurrent updates 474–478
implementing a result factory 275

implementing dynamic paged queries 424–438
implementing repositories 173–183
implementing the Acknowledge Order use

case 495
implementing the Modify Order use case 522
IntIdentity 153
issues and limitations 150–159
javax.jdo.option.Optimistic 474
and long transactions 495
mapping interfaces 155
mapping overview 117
named JDO query example 180
native SQL queries 120
nontransactional reads 301
object identity 151
Optimistic Offline Lock Pattern 495–500
optimistic transactions 474
overview 117–125
package.jdo 171
paging 436
partial object loading 432
performance tuning 141–146, 183–193
persistence tests example 166
PersistenceManager 118
PersistenceManagerFactory 118
persistent class example 170
process-level caching 122, 191

See also process-level caching
projection queries 433
Query 118
query cache 123, 193
query generation 426, 439
repository example 178, 439
ResultSet handling 436
signalling concurent update failures 477
single field identity 152
SQL projection query 447
testing a JDOQL query 180
testing persistent objects 164–170
Transaction 118
transaction management API overview 120
using datastore transactions 476
using fetch groups 429
using native SQL queries 446–449
using optimistic transactions 475
using with Spring 126
writing tests for 159, 164

Java Naming and Directory Interface. See JNDI
javax.jdo.option.NontransactionalRead

property 301
javax.jdo.option.Optimistic 474

548 INDEX
JBoss
@Cascade 370
@Depends 396
@OrderBy 369
@Service 395–396
service POJO 395
when to use 28

JBoss Cache 240
JDBC

implementing concurrency 462
problems with using directly 41
replacing with a mapping framework 41
replacing with iBATIS SQL Maps. See iBATIS

SQL Maps
JDBCException 482
.jdo file 171
JDO. See Java Data Objects
JDO version 160
JDO XML metadata

JDO metadata example 170
writing JDO XML metadata 170

JDODetachedObjectAccessException 254
JDOException 477

getCause() 478
mapped by JdoTemplate 478

JDOHelper 497
getObject() 154
getVersion 497

JDOMappingStrategy 159
JDOMappingTests 140, 160
JDOOptimisticVerificationException 478
JDOOptimisticVerificationFailedException 475
JDOOrderAttachmentManager 506
JDOOrderRepositoryImpl 439
JDOPendingOrderPersistenceTests 166
JDOPersistenceTests 140

deletePersistent() 164
doInTransaction() 163
getObjectById() 164
makePersistent() 163
overview of 163

JDOPlaceOrderFacadeResultFactory 277
JDOQL 119

example of 180
range clause 436

JDORestaurantRepositoryImpl 178
JDORestaurantRepositoryImplTests 176
JDORestaurantRepositoryQueryTests 181
JDOSchemaTests 161

assertDatabaseSchema() 161

JdoTemplate 126
attachCopy() 498
configuration example 282
configuring to use a custom

SQLExceptionTranslator 478
detachCopy() 498
implementing a repository with 128
mapping JDOExceptions 478
repository using example 178
using to implement a repository 174

JdoTransactionManager 260
example configuration 282

Jetty 27
jMock 78

implementing mock objects with 78
Mock 79
MockObjectTestCase 79
testing a POJO façade 268
testing a transaction script 376
testing an iBATIS DAO 390
See also mock object

JNDI
binding references 395
Reference 393
replacing lookups with dependency

injection 365
replacing with dependency injection 25

JndiObjectFactoryBean 397
lookupOnStartup property 397
proxyInterface property 397

joins 113
JPOXMappingStrategy 161
JSR12. See Java Data Objects
JSR243. See Java Data Objects
JTA transaction

and the Exposed Domain Model pattern 301
managing with Spring 257, 261

JtaTransactionManager 261
JUnit 76

DbUnit extension 351
XmlUnit extension 139

K

<key> element 203
Kodo JDO 186

configuring optimistic locking 475
detaching objects 276
fetch groups 186
process-level caching 191

INDEX 549
Kodo JDO (continued)
query caching 193
ResultSet handling 436

kodo.DataCache property 192
kodo.QueryCache property 193
kodo.RemoteCommitProvider 192
KodoFetchGroupInterceptor 187
KodoJDOAttachObjectCallback 506
KodoJDODetachObjectCallback 276, 506
KodoPersistenceManager 187

setQueryCacheEnabled() 193
KodoQuery 193

L

law of unintended consequences 318
lazy loading

benefits of 113
in Hibernate 209
Hibernate inheritance hierarchies 209
overview 112
See also eager loading

lazy property loading, in Hibernate 211
lightweight approach 13
lightweight container. See Spring framework
lightweight framework

making POJOs transactional 19–25
persistence 12
persisting POJOs 16–18
providing services for POJOs 12
See also Hibernate; iBATIS SQL maps; JDO; non

intrusive framework; Spring framework
transaction management 13

limitations 461
<list> element

mapping a component collection 204
mapping an entity collection 203

list(), defined by Hibernate Query 120
load() 119

defined by HibernatePersistenceTests 216
and pessimistic locking 480

@Local 363
local transaction, managing with Spring 257
LocalPersistenceManagerFactoryBean

configuring the JDO transaction type 475
example configuration 282
exposed domain model example

configuration 311
LocalSessionFactoryBean, example

configuration 284

lock manager
alternative to object locks 514
benefits and drawbacks 516
iBATIS implementation 520
implementing 516
Pessimistic Offline Lock pattern 514
using 515

lock(), and pessimistic locking 480
locking

application-level 508
database-level 458–461

LockManager, interface 514
LockManagerIBatisImpl 520
LockMode.UPGRADE 480
LockMode.UPGRADE_NO_WAIT 480
long database transactions, drawbacks of 491
long transaction

handling concurrency 46–47
with Hibernate 495
with JDO 495
overview of handling concurrency 489–492
See also edit-style use case; Optimistic Offline

Lock pattern; Pessimistic Offline Lock pattern
lookupOnStartup property 397
loop back calls 9
lost updates 452

preventing with fully isolated transactions 453
preventing with optimistic locking 454–458
preventing with pessimistic locking 458–461

M

makePersistent() 119
defined by JDOPersistenceTests 163

@ManyToOne 364
targetEntityMember 379

<many-to-one> element 227
mapping

class 97
class to its own table 98
class to multiple tables 99
class to parent's table 98
collections 101
inheritance 103–106
relationships 99–103
using a relationship using join table 102

mapping the Coupon hierarchy 103
MENU_ITEM table 146–147
MenuItem 65

550 INDEX
message-driven bean 248
MethodSecurityInterceptor 262
Mock 79

proxy() 79
verify() 79

mock object 76
example of using 84
testing a DAO method 343
testing a Hibernate repository 228
testing a JDO repository 174
testing a transaction script 329
testing repositories with mock objects 140
using to test a POJO façade 267

mock object. See jMock
MockObjectTestCase 79

eq() 79
returnValue() 79

Modify Order use
implementing with Hibernate 522
implementing with JDO 522

Modify Order use case 508
domain model implementation 522
implementing with the Pessimistic Offline Lock

pattern 520–532
one approach 58
overview 57

ModifyOrderResult 524
ModifyOrderService 522
ModifyOrderServiceImpl 524
money transfer example

heavyweight example 6
lightweight version 12

MyExampleCallback 130
MyOracleSQLException

Translator 471

N

named query, JDO example of 180
@NamedQuery annotation 382
Nan 489
native SQL query 120
natural key 108
newNamedQuery() 119
newObjectIdInstance() 154
newQuery() 119
nondurable identity 151
nonintrusive framework. See lightweight

framework
nontransactional reads 301

O

object identity
in Hibernate 200
in JDO 151
and persistence 107

object loading, partial 432
object locks 518
object model. See domain model
object query 119

See also criteria query; HSQL; JDOQL
object/relational

mismatch 96
object/relational mapping

defining with Hibernate 225
defining with JDO 170
Hibernate example 225
Hibernate test example 217
JDO example 170
JDO test example 164
mapping a domain model to a schema 96–108
mapping to an existing database schema 117
overview of performance tuning 141–146
potential bugs 133
testing 133, 139
testing in Hibernate 214
testing in JDO 160
verifying that it matches the schema 137
See also Hibernate; Java Data Objects; persistent

domain model
object/relational mapping framework 16

API for creating, loading and deleting
objects 111

benefits and drawbacks
114–116

caching. See caching
connection factory interface 118
connection interface 118
and DBAs 116
declarative mapping between object model and

schema 110
denormalized schema 434
dependency injection 89
eager loading. See eager loading
generating database schema from object/

relational mapping 117
implementing dynamic paged queries 424, 438
key features 109–114
lazy loading. See lazy loading
limitations 116
overview 108–116

INDEX 551
object/relational mapping framework (continued)
problems solved by 109
query generation 426
query interface 118
query language 112
relationship with the rest of the application 110
transaction interface 118
transaction management 112
using 43
See also detached objects

ObjectOptimisticLockingFailureException 500
object-oriented analysis and design 62
object-oriented approach. See Domain Model

pattern
object-oriented design 14

avoiding with transaction scripts 322
back in fashion 62
benefits 15
defined 8
going out of fashion 7

offline locking. See long transaction
OFFLINE_LOCK 520
@OneToMany 364
one-to-many relationship, mapping with

Hibernate 202
OOAD. See object-oriented analysis and design
Open PersistenceManager in View pattern. See

Exposed Domain Model pattern
Open Session in View pattern. See Exposed

Domain Model pattern
OpenPersistenceManagerInViewFilter 296

example configuration 312
openSessionFactory() 214
OpenSessionInViewFilter 296

deferred close mode 303
OpenSessionInViewInterceptor 296
optimistic locking

benefits and drawbacks 457
comparing columns 455
in EJB 3 403
example scenario 456
Hibernate 479
with iBATIS SQL Maps 464
implementing efficiently 456
in JDO 475
limitations 492
overview 45, 454–458
timestamp column 455
tracking changes 455
version column 455
when to use 458

optimistic locking. See Optimistic Offline Lock
pattern

Optimistic Offline Lock pattern
benefits and drawbacks 494, 496, 498
with detached objects 497
detached objects example 508
in EJB 3 403
example scenario 493
extending to work with the Pessimistic Offline

Lock pattern 531
as an extension of optimistic locking 492
handling locking failures 499
overview 46, 492–495
with version numbers or timestamps 495
when to implement with detached objects 500
when to use 494

Optimistic Offline Locking pattern
when to implement with version numbers or

timestamps 497
optimistic transactions 474

using 475
optimistic-lock attribute 479
OptimisticLockingFailureException 469
optimizer hint 115, 415
ORA-00054 470
ORA-00060 461
ORA-08177 470
Oracle

optimizer hints 415
ORA-00054 470
ORA-00060 461
ORA-08177 470
pessimistic locking 459
ROWNUM 416
SELECT FOR UPDATE 459

Order 66, 504
making detachable with Hibernate 505
making detachable with JDO 504

Order page 265
OrderAttachmentManager 502, 505
@OrderBy 369

JBoss extension 369
OrderDAO 419, 464

iBATIS SQL Maps implementation 418–424
OrderDAOIBatisImpl 420, 464
OrderRepository 66, 438

findOrders() 438
Hibernate implementation 442–446
JDO implementation 438–442

OrderSearchCriteria 420

552 INDEX
OrderSummaryDTO 420
.orm file 171
ORM. See object/relational mapping
ORMUnit

Hibernate version 213
JDO version 159–164
overview 140

orphans
deleting in EJB 3 369
deleting in Hibernate 203
deleting in JDO 173

OverdraftPolicy 15

P

package.jdo file 171
PagedQueryResult 420
paging

criteria queries 437
Hibernate 437
implementation options 410–413
JDO 436
Kodo JDO 436
by navigating through the ResultSet 416
object/relational mapping framework 435
using ROWNUM 416
with ScrollableResults 437

partial object loading, in JDO 432
PaymentInformation 66
PENDING_ORDER table 147
PendingOrder 65

detaching with Hibernate 273
detaching with JDO 275
implementing 87–92
implementing with EJB 3 373
persistence tests 166, 219
persisting with Hibernate 224
persisting with JDO 170
testing 87
updateDeliveryInfo() 87
verifying the Hibernate object/relational

mapping 217
verifying the JDO object/relational

mapping 164
PendingOrder.hbm.xml 226
PendingOrder.xml 348
PendingOrderAdapter 253
PendingOrderDAOIbatisImpl 345
PendingOrderDAOIbatisImplMockTests 344
PendingOrderDetail 252

PendingOrderDTO 327
PendingOrderLineItemDetail 252
PendingOrderRepository 82

findOrCreatePendingOrder() 82
PendingOrderRespository 66
PendingOrderTests 91
PercentageDiscountCoupon

mapping to the database 103
persisting with JDO 156

per-field fetch configuration
in Kodo JDO 186
using to detach objects 276

performance
eager loading 142, 428
and the Hibernate fetch attribute 235
and Hibernate fetch joins 237
improving performance of an object/relational

mapping framework 141–146
improving performance with optimizer

hints 415
improving performance with ROWNUM 416
and JDO fetch groups 184–191
optimizing with a Hibernate process-level

cache 240
optimizing with a JDO PersistenceManager

Factory-level cache 191
partial object loading in JDO 429
performance benefits of an object/relational

mapping framework 115
and process-level caching 145
and query caching 145
rewriting SQL queries 418
SQL query optimization 414–418
tuning in a Hibernate application 234–241
tuning in a JDO application 183–193
using denormalization to improve

performance 415
Persistence 366

createEntityManagerFactory() 367
example 383

persistence, transparent persistence 16
persistence framework. See object/relational

mapping framework
@PersistenceContexts 396
PersistenceManager 118

checkConsistency() 500
close() 119
currentTransaction() 119
deletePersistent() 119
detachCopy() 254
detachCopyAll() 254

INDEX 553
PersistenceManager (continued)
examples of methods defined by 119
getFetchPlan() 186
getObjectById() 119
kodo.QueryCache property 193
makePersistent() 119
managing with the

OpenPersistenceManagerInViewFilter 295
newNamedQuery() 119
newObjectIdInstance() 154
newQuery() 119

PersistenceManager.flush(), flush() 500
PersistenceManagerFactory 118

configuring for non-transactional reads 311
configuring the transaction type 474
setNonTransactionalRead() 301
setOptimistic() 474

PersistenceManagerFactory-level cache 191
evicting objects 192

PersistenceManagerFactoryUtils 260
persistent domain model

with EJB 3 372, 385
with Hibernate 212–227
with JDO 159–173
testing 132–141

persistent object
assigning a primary key 108
change tracking 109
creating 107
database identity 108
deleting 107
ensuring Java identity matches persistent

identity 108
generating identifiers in Hibernate 201
generating identifiers in JDO 151
generating identifiers with EJB 3 364
identity 107
managing lifecycle 107
nontransactional access 301
testing 135

PersistentClass 214
pessimistic locking

benefits and drawbacks 460
in EJB 3 403
example scenario 459
Hibernate 480
with iBATIS SQL Maps 466
in JDO 476
limitations 492
in Oracle 459
overview 45, 458–461
when to use 461

Pessimistic Offline Lock pattern
benefits and drawbacks 510
cleaning up locks 511
design decisions 511–519
determining the lock owner 513
example scenario 509
handling locking failures 519
how to manage the locks 513
impact on other use cases 529
in EJB 3 403
lock types 512
motivation 508
overview 47, 508–511
using a lock manager 514
using in a domain model 520–532
using object locks 518
when to use 511
working with the Optimistic Offline Lock

pattern 531
PessimisticLockingFailure 469
phantoms 453
place order request 72
Place Order use case

analyzing 69
developing a domain model for 68–79
encapsulating with a POJO façade 264–267
implemented using the Exposed Domain

Model 304
implementing using the Transaction Script

pattern 325
one approach 54
optimizing Hibernate eager loading 235–240
optimizing JDO eager loading 184–191
optimizing performance with Hibernate

process-level caching 240
optimizing with Hibernate query caching 241
optimizing with JDO process-level caching 191
optimizing with JDO query caching 193
overview 54
user interface 265

PLACED_ORDER table 147
PLACED_ORDER_LINE_ITEM table 147
PlaceOrderFacade

as an EJB 3 session bean 386
as an EJB 3 stateless session bean 363
as a POJO 245
Spring-managed transactions 257
updateDeliveryInfo() 245
updateRestaurant() 270
using EJB 3 dependency injection 390

554 INDEX
placeOrderFacade-generic-beans.xml 281
placeOrderFacade-hibernate-beans.xml 284
PlaceOrderFacadeImpl 246
PlaceOrderFacadeImplUsingSpring 399
placeOrderFacade-jdo-beans.xml 282
PlaceOrderFacadeMockTests 268
PlaceOrderFacadeResult 266
PlaceOrderFacadeResultFactory 273

EJB 3 implementation 387
PlaceOrderService 65

as an EJB 3 session bean 391
implementing 80–86
Spring beans for the Exposed Domain Model

pattern 310
testing 81
updateDeliveryInfo() 73

placeOrderService-exposedDomain-
beans.xml 310

PlaceOrderServiceImpl 83
PlaceOrderServiceResult 74
PlaceOrderServiceTests 84
PlaceOrderTransactionScripts 320, 327

Spring bean definitions 355
placeOrderTransactionScripts-ibatis-

beans.xml 356
PlaceOrderTransactionScriptsImpl 333
PlaceOrderTransactionScriptsImplTests 330
plain old Java object. See POJO
PlatformTransactionManager 259
POJO

approach 13, 32
benefits of 15
defined 12
developing with 12, 29
EJB 3 enterprise Java Bean 362
making transactional 19–25
overview 15
persisting 16–18
See also lightweight framework

POJO façade
benefits 247–248
compared to an EJB 244–250
compared to the Exposed Domain Model

pattern 247
converting to an EJB 3 session bean 386
deploying with Hibernate and Spring 284
deploying with JDO and Spring 282
deploying with Spring

279–286
design decisions 251
designing the interface264–267

detached objects 254
determining method signatures 264
drawbacks 248, 250
encapsulation issues 250
example of 245–247
handling remote clients 263
implementing 267–271
implementing with Spring 257
managing connections 257
managing transactions 257
overview 244–250
reasons for using 271
signalling errors 256
similarity to transaction scripts 327
testing 267
use 39, 250

portability
improving by using POJOs 16
improving with an object/relational mapping

framework 115
@PostConstruct 400
presentation tier

and the Exposed Domain Model pattern 291
domain object methods that cannot be

called by 250
example design 306
invoking POJO façade 264
managing transactions 296–311

primary-key attribute 152
procedural design. See Transaction Script pattern
process-level caching

challenges with using 122
in Hibernate 240
in JDO 191
and optimistic locking 123
overview 122
using to improve performance 145
when to use 122

productivity, improving with an object/relational
mapping framework 114

projection query
alternative to JDO fetch groups 433
in Hibernate 434
in JDO 433

projectionList() 434
Projections 434

setProjectionList() 434
PROPAGATION_REQUIRED 259
PROPAGATION_SUPPORTS 259
<property> element 197

INDEX 555
proxy 21
applying with a

BeanNameAutoProxyCreator 23
in Hibernate 209
trouble with downcasting in Hibernate 210

proxy() 79
proxyInterface property 397

Q

Query 118
execute() 120
getResultList() 367
in EJB 3 367
list() 120
scroll() 120
setLockMode() 480
setParameter() 367
setResultClass() 448

query, testing 136
query caching

improving performance with 145
overview 123

<query> element
in Hibernate 232
in JDO 180

query generation
with Hibernate 427
Hibernate example 444
with IBATIS SQL Maps 413
with JDO 426
JDO example 439
with object/relational mapping frameworks 426
options 413–414

queryForList() 341
dynamic paged queries 420

queryForObject() 341
querying caching

in Hibernate 241
in JDO 193

R

read/write locks 513
readOnly 259
refactoring 75
Reference 393
relationship. See mapping
releaseLock() 514

remote client
supporting with a POJO façade 263

repeatable read
drawbacks 454
isolation level 453

repeatable read transactions
benefits 454
iBATIS SQL Maps 466
in Hibernate 481
in JDO 477
when to use 454

repository
accessing from an entity 88
accessing via static methods and variables 89
accessing via ThreadLocal 89
defined 67
dependency injection 89
as an EJB 3 session bean 392
eliminating boilerplate code 128
encapsulating the persistence framework 17
example of a Hibernate repository 231
example of a JDO repository 178
example of. See PendingOrderRepository; Res-

taurantRepository
Hibernate example 443
implementing with EJB 3 380–382
implementing with Hibernate 228–234
implementing with Hibernate and Spring 125
implementing with JDO 173–183
implementing with JDO and Spring 125
implementing with Spring 125–132
improving testability 129
injecting the EntityManager 397
JDO example 439
mock object testing 140
mocking 84
overview 17
passing as method parameter 89
writing mock object tests for a JDO

repository 174
request

defining a service method for 73
identifying 71
See also checkout request; enter delivery info

request; enter payment information; place
order request; select restaurant request;
update quantities request

@Resource 396
responsibility 69

of an application 72
assigning to classes and methods 73

556 INDEX
responsibility (continued)
determining 70
example of assigning 82

Restaurant 65
implementing with EJB 3 376

Restaurant List page 265
RESTAURANT table 147
RESTAURANT_TIME_RANGE table 147
RESTAURANT_ZIP_CODE table 146
RestaurantMother 233
RestaurantNotificationGateway 464
RestaurantNotificationTransactionScripts 463
RestaurantRepository 66

EJB 3 implementation 380
Hibernate implementation 228–234
isRestaurantAvailable() 88
JDO implementation 173–183
mocking 92

result factory
implementing 272–279
motivation 268

<resultMap> 342
returnValue() 79
RMIServiceExporter 263
rollback rule 24, 259
rollback(), defined by

PlatformTransactionManager 259
ROWNUM 416

example of using 422

S

save()
defined by HibernatePersistenceTests 216
defined by Session 119

scroll()
defined by Criteria 437
defined by Hibernate Query 120

ScrollableResults 437
security

and POJOs 261
business tier 262
implementing with ACEGI security 249
POJO façade 248, 261
web tier 262

SecurityContextHolder 262
getting user id 513

SELECT FOR UPDATE 459
example 466

select restaurant request 72
Send Orders to Restaurant use case

domain model 472
impact of the Pessimistic Offline Lock

pattern 529
implementing with iBATIS SQL Maps 462
one approach 56
optimistic locking 464
overview 56
pessimistic locking 466

Send Orders use case
implementing with Hibernate and JDO

472–483
separation of concerns

lack of 10
serializable transactions

benefits 454
drawbacks 454
in EJB 3 403
in Hibernate 481
iBATIS SQL Maps 466
in JDO 477
limitations 492
when to use 454

@Service 395–396
service 68

example test case 85
implementing 80–86
testing 81
See also PlaceOrderService

service POJO 395
Servlet API, and transaction rollbacks 298
servlet filter

managing connections with 291
See also OpenPersistenceManagerInViewFilter;

OpenSessionInViewFilter
Session 118

beginTransaction() 119
clear() 303
close() 119
createCriteria() 427
createNamedQuery() 119
createQuery() 119
createSQLQuery() 448
flush() 479
getNamedQuery() 448
load() 119
load() and pessimistic locking 480
lock() 480
managing with OpenSessionInViewFilter 295

INDEX 557
Session (continued)
methods defined by examples 119
save() 119

session bean, encapsulating the business logic
with 385–388

session façade. See EJB Session Façade
SessionFactory 118
SessionFactoryUtils 126, 260

using directly 126
setFetchGroup() 432
setFetchMode() 430
setFirstResult() 437
setLockMode() 480
setMaxResults() 437
setNontransactionalRead() 301
setOptimistic() 474
setParameter() 367
setQueryCacheEnabled() 193
setResultClass() 448
setter injection 26
shared data, concurrent access to 452
single field identity 152
Spring

bean factory 21
connection management with a servlet

filter 295
data access exceptions 469
deploying a POJO façade 279–286
extending SQLException mapping 470
and iBATIS SQL maps 339
implementing a POJO façade 257
implementing a repository with Hibernate and

Spring 231
implementing a repository with JDO and

Spring 178
implementing DAOs 337–354
implementing repositories 125–132
integrating dependency injection with

EJB 3 392–398
JndiObjectFactoryBean 397
managing connections in the Transaction Script

pattern 354–358
managing JDBC connections and

transactions 354
managing transactions 21–25
managing transactions in the Transaction Script

pattern 354–358
supporting remote clients 263
using dependency injection with EJB 3 398
using the ORM classes 126

Spring AOP
benefits 25
compared to other AOP implementations 25
configuring JDO fetch groups with 187
example of a custom interceptor.

See TransactionRetryInterceptor
for transaction management 248
managing 257
recovering from current update failures 484
security 262

Spring bean
accessing using EJB 3 dependency

injection 392–398
configuring a Hibernate POJO façade 284
configuring a JDO POJO façade 282
configuring a POJO façade 280
configuring a transaction script 355
defined 21
exposing via JNDI 393
for configuring the Exposed Domain Model

pattern 310
for transaction scripts 354–358
verbosity compared to EJB 3 286

Spring configuration file
exposed domain model example 310
exposed JDO domain model example 311
Hibernate POJO façade example 284
JDO POJO façade example 282
POJO façade example 281
transaction script example 356

Spring data access exception, mapping using
SessionFactoryUtil 127

Spring HTTP 263
SpringObjectFactory 394
SQL

lack of portability 323
optimizer hint 115
problems with hand-written SQL 41
reasons to use hand-written SQL 42, 115
and transaction scripts 322
using directly with transaction scripts 324

SQL projection query 447
SQL query

in Hibernate 446, 448–449
in JDO 446–449
optimization 414–418
rewriting to improve performance 418

SQLErrorCodeSQLExceptionTranslator 471
subclassing 471

SQLExceptionTranslator 471

558 INDEX
<sqlMap> 358
<sqlmap> 342
SqlMapClientDaoSupport 339
SqlMapClientFactoryBean 356
SqlMapClientTemplate 339

configuration example 356
configuring to use a custom

SQLExceptionTranslator 471
DAO example 345
exception mapping 470
queryForList() 420

SqlMapClientTemplateusing 340
<sqlMapConfig> 358
sqlMap-config.xml 358
StaleObjectStateException 482
StaleStateException 482
@Stateless 363
<statement> 342
static methods and variables, drawbacks 89
stored procedures and object/relational mapping

frameworks 116
strategy attribute 476
<subclass> element 208
surrogate key 108

Hibernate 201
in JDO 151

SwarmCache 240

T

table 146
per class 105
per concrete class 106
per hierarchy 104

Table Module pattern, overview 37
targetEntity member 379
test-driven development 75

of a Hibernate domain model 212–227
of a JDO domain model 159–173
and refactoring 75

testing
a DAO method 343
with a database 135
DbUnit 136
with DbUnit 351
EJB 3 domain model 382–385
an entity 91
Hibernate database schema 215
Hibernate object/relational mapping 214
Hibernate objects 213, 217–224
Hibernate persistent objects 216

iBATIS SQL Maps 350
JDO database schema 161
JDO example of verifying the database

schema 166, 219
JDO object/relational mapping 160
JDO objects 159–170
with jMock 78
with JUnit 76
minimize test execution time 133
with mock objects 76
object/relational mapping 139
object/relational mapping metadata 139
object/relational mapping via XML 139
persistent object 135
a POJO façade 267
queries 136
a service 84
testing an HQL query 233
testing an JDOQL query 180
testing persistent objects example 166, 219
testing the object/relational mapping 133
a transaction script 329
using an in-memory database 138
verifying the Hibernate object/relational

mapping example 217
verifying the JDO object/

relational mapping example 164
with DbUnit 351
writing mock object tests for a JDO

repository 174
with XmlUnit 139

testing. See persistent domain model
The ServerSide Java Symposium 2004 244
ThreadLocal

internal to Spring 260
providing access to repositories with 89

TimeRange 66
<timestamp> 479
timestamp column 455
TiVo moment

changing the TV viewing experience 4
with POJOs and lightweight frameworks 16

Tomcat 27
TORPEDO benchmark 124
Transaction 118, 120

setNonTransactionalRead() 301
transaction

isolation levels 453–454
retrying 484
rollbacks and the Servlet API 298
serializable 453

INDEX 559
transaction management
and JDBC. See DataSourceTransactionManager
and the Servlet API 298
with an EJB 3 session bean 385–388
with HibernateTransactionManager 260
in a POJO façade 257
in the Exposed Domain Model pattern 296–311
JDBC transactions and Spring 354
with JdoTransactionManager 260
JTA transactions 261
with JtaTransactionManager 261
local transactions 260
retrying with the

TransactionRetryInterceptor 302
with TransactionInterceptor 257
using a servlet filter 297

transaction script
defined 319
development steps 325
example 333
identifying 325–328
implementing 329–337
lack of portability 323
simplifying with a DAO 320
and SQL 322
testing 329
writing Spring beans 354–358

Transaction Script pattern 35
benefits 322–323
drawbacks 322–323
EJB 3 401
example structure 36
overview 318–324
testing transaction scripts 329
when to use 324

transaction script. See Transaction Script pattern
transactionAttributesSource property 258
TransactionInterceptor

configuration example 23
configuring 257
configuring the isolation level 467
how it works 23
managing transactions for a POJO façade 246
transaction script example 356
using with the Exposed Domain Model

pattern 293
TransactionRetryInterceptor 302, 484
transcript script, similarity to a POJO façade 327
TransferFacade 19
TransferFacadeImpl 19
TransferResult 7, 19
TransferService 14

TransferService EJB 6
transparent persistence 16, 63, 110
turtles all the way down 337

U

unforeseen effects 318
update quantities request 72
update() 341, 498
updateDeliveryInfo()

defined by PlaceOrderFacade 245
defined by

PlaceOrderTransactionScriptsImpl 333
of the PendingOrder class 87
of the PlaceOrderService class 73

UpdateDeliveryInfoResult, returned by
PlaceOrderTransactionScripts 327

UpdateDeliveryInfoServlet 292, 306
updateRestaurant(), defined by

PlaceOrderFacade 270
use case

to find domain classes 69
to identify requests 71
to identify transaction scripts 325

user interface
to identify POJO façade methods 264
to identify transaction scripts 326

V

value object, defined 67
See also Address; TimeRange

value-strategy attribute 152
verify() 79
verifyLock() 514
<version> 476, 479

strategy attribute 476
version column 455
View Orders use case 409

eager loading 428
Hibernate implementation 442–446
iBATIS SQL implementation 418–424
JDO implementation 438–442
one approach 55
overview 55

W

web application
configuring in a Hibernate application 314
configuring in a JDO application 312

560 INDEX
Web services 263
web.xml

configuring for an exposed Hibernate domain
model 314

configuring for an exposed JDO domain
model 312

WebApplicationContext
configuring in a Hibernate web application 314
configuring in a JDO web application 311

WebLogic Express 27
WebLogic Server, when to use 28
whole-part relationship 102

X

XML deployment descriptor
replaced by annotations 363

XMLTestCase 139
assertXpathEvaluatesTo() 139

XmlUnit 139
XPath 139

Z

ZIP_CODE table 146

	POJOs in Action
	Brief contents
	Contents
	Preface
	Acknowledgments
	About this book
	About the title
	About the cover illustration
	PART 1 Overview of POJOs and lightweight frameworks
	Developing with POJOs: faster and easier
	1.1 The disillusionment with EJBs
	1.1.1 A brief history of EJBs
	1.1.2 A typical EJB 2 application architecture
	1.1.3 The problems with EJBs
	1.1.4 EJB 3 is a step in the right direction

	1.2 Developing with POJOs
	1.2.1 Using an object-oriented design
	1.2.2 Using POJOs
	1.2.3 Persisting POJOs
	1.2.4 Eliminating DTOs
	1.2.5 Making POJOs transactional
	1.2.6 Configuring applications with Spring
	1.2.7 Deploying a POJO application
	1.2.8 POJO design summary

	1.3 Summary

	J2EE design decisions
	2.1 Business logic and database access decisions
	2.2 Decision 1: organizing the business logic
	2.2.1 Using a procedural design
	2.2.2 Using an object-oriented design
	2.2.3 Table Module pattern

	2.3 Decision 2: encapsulating the business logic
	2.3.1 EJB session facade
	2.3.2 POJO façade
	2.3.3 Exposed Domain Model pattern

	2.4 Decision 3: accessing the database
	2.4.1 What’s wrong with using JDBC directly?
	2.4.2 Using iBATIS
	2.4.3 Using a persistence framework

	2.5 Decision 4: handling concurrency in database transactions
	2.5.1 Isolated database transactions
	2.5.2 Optimistic locking
	2.5.3 Pessimistic locking

	2.6 Decision 5: handling concurrency in long transactions
	2.6.1 Optimistic Offline Lock pattern
	2.6.2 Pessimistic Offline Lock pattern

	2.7 Making design decisions on a project
	2.7.1 Overview of the example application
	2.7.2 Making high-level design decisions
	2.7.3 Making use case-level decisions

	2.8 Summary

	PART 2 A simpler, faster approach
	Using the Domain Model pattern
	3.1 Understanding the Domain Model pattern
	3.1.1 Where the domain model fits into the overall architecture
	3.1.2 An example domain model
	3.1.3 Roles in the domain model

	3.2 Developing a domain model
	3.2.1 Identifying classes, attributes, and relationships
	3.2.2 Adding behavior to the domain model

	3.3 Implementing a domain model: an example
	3.3.1 Implementing a domain service method
	3.3.2 Implementing a domain entity method
	3.3.3 Summary of the design

	3.4 Summary

	Overview of persisting a domain model
	4.1 Mapping an object model to a database
	4.1.1 Mapping classes
	4.1.2 Mapping object relationships
	4.1.3 Mapping inheritance
	4.1.4 Managing object lifecycles
	4.1.5 Persistent object identity

	4.2 Overview of ORM frameworks
	4.2.1 Why you don’t want to persist objects yourself
	4.2.2 The key features of an ORM framework
	4.2.3 Benefits and drawbacks of using an ORM framework

	4.3 Overview of JDO and Hibernate
	4.3.1 Declarative mapping between the object model and the schema
	4.3.2 API for creating, reading, updating, and deleting objects
	4.3.3 Query language
	4.3.4 Support for transactions
	4.3.5 Lazy and eager loading
	4.3.6 Object caching
	4.3.7 Detached objects
	4.3.8 Hibernate vs. JDO

	4.4 Designing repositories with Spring
	4.4.1 Implementing JDO and Hibernate repositories
	4.4.2 Using the Spring ORM classes
	4.4.3 Making repositories easier to test

	4.5 Testing a persistent domain model
	4.5.1 Object/relational testing strategies
	4.5.2 Testing against the database
	4.5.3 Testing without the database
	4.5.4 Overview of ORMUnit

	4.6 Performance tuning JDO and Hibernate
	4.6.1 Without any tuning
	4.6.2 Configuring eager loading
	4.6.3 Using a process-level cache
	4.6.4 Using the query cache

	4.7 The example schema
	4.8 Summary

	Persisting a domain model with JDO 2.0
	5.1 JDO issues and limitations
	5.1.1 Configuring JDO object identity
	5.1.2 Persisting interfaces
	5.1.3 Using the JDO enhancer

	5.2 Persisting a domain model class with JDO
	5.2.1 Writing JDO persistence tests with ORMUnit
	5.2.2 Testing persistent JDO objects
	5.2.3 Making a class persistent

	5.3 Implementing the JDO repositories
	5.3.1 Writing a mock object test for findRestaurants()
	5.3.2 Implementing JDORestaurantRepositoryImpl
	5.3.3 Writing the query that finds the restaurants
	5.3.4 Writing tests for a query

	5.4 JDO performance tuning
	5.4.1 Using fetch groups to optimize object loading
	5.4.2 Using a PersistenceManagerFactory-level cache
	5.4.3 Using a query cache

	5.5 Summary

	Persisting a domain model with Hibernate 3
	6.1 Hibernate ORM issues
	6.1.1 Fields or properties
	6.1.2 Hibernate entities and components
	6.1.3 Configuring object identity
	6.1.4 Using the cascade attribute
	6.1.5 Persisting interfaces

	6.2 Other Hibernate issues
	6.2.1 Exception handling
	6.2.2 Lazy loading and inheritance hierarchies

	6.3 Persisting a domain model class using Hibernate
	6.3.1 Writing Hibernate persistence tests with ORMUnit
	6.3.2 Testing persistent Hibernate objects
	6.3.3 Making a class persistent

	6.4 Implementing a repository using Hibernate
	6.4.1 Writing a mock object test for a repository method
	6.4.2 Implementing HibernateRestaurantRepositoryImpl
	6.4.3 Writing the query that finds the restaurants
	6.4.4 Writing tests for a query

	6.5 Hibernate performance tuning
	6.5.1 Using eager loading
	6.5.2 Using a process-level cache
	6.5.3 Using a query cache

	6.6 Summary

	Encapsulating the business logic with a POJO façade
	7.1 Overview of a POJO façade
	7.1.1 An example POJO façade
	7.1.2 Benefits of a POJO façade
	7.1.3 Drawbacks of a POJO façade
	7.1.4 When to use a POJO façade and detached domain objects

	7.2 POJO façade design decisions
	7.2.1 Encapsulating the domain objects
	7.2.2 Detaching objects
	7.2.3 Exceptions versus status codes
	7.2.4 Managing transactions and connections
	7.2.5 Implementing security
	7.2.6 Supporting remote clients

	7.3 Designing a POJO façade’s interface
	7.3.1 Determining the method signatures

	7.4 Implementing the POJO façade
	7.4.1 Writing a test for a POJO façade method
	7.4.2 Implementing updateRestaurant()

	7.5 Implementing a result factory
	7.5.1 Implementing a Hibernate result factory
	7.5.2 Implementing a JDO result factory

	7.6 Deploying the POJO façade with Spring
	7.6.1 Generic bean definitions
	7.6.2 JDO-specific bean definitions
	7.6.3 Hibernate bean definitions

	7.7 Summary

	PART 3 Variations
	Using an exposed domain model
	8.1 Overview of the Exposed Domain Model pattern
	8.1.1 Applying the Exposed Domain Model pattern
	8.1.2 Benefits and drawbacks of this pattern
	8.1.3 When to use the Exposed Domain Model pattern

	8.2 Managing connections using a Spring filter
	8.3 Managing transactions
	8.3.1 Managing transactions in the presentation tier
	8.3.2 Managing transactions in the business tier

	8.4 An example of the Exposed Domain Model pattern
	8.4.1 Servlet design
	8.4.2 JSP page design
	8.4.3 PlaceOrderService configuration

	8.5 Using JDO with an exposed domain model
	8.5.1 Defining the Spring beans
	8.5.2 Configuring the web application

	8.6 Using Hibernate with an exposed domain model
	8.6.1 Defining the Spring beans
	8.6.2 Configuring the web application

	8.7 Summary

	Using the Transaction Script pattern
	9.1 Overview of the Transaction Script pattern
	9.1.1 Applying the Transaction Script pattern
	9.1.2 Benefits and drawbacks of the Transaction Script pattern
	9.1.3 When to use the Transaction Script pattern

	9.2 Identifying the transaction scripts
	9.2.1 Analyzing the use case
	9.2.2 Analyzing the user interface design
	9.2.3 The PlaceOrderTransactionScripts interface

	9.3 Implementing a POJO transaction script
	9.3.1 Writing a test for the transaction script
	9.3.2 Writing the transaction script

	9.4 Implementing the DAOs with iBATIS and Spring
	9.4.1 Overview of using iBATIS with Spring
	9.4.2 Implementing a DAO method

	9.5 Configuring the transaction scripts using Spring
	9.5.1 How Spring manages JDBC connections and transactions
	9.5.2 The Spring bean definitions

	9.6 Summary

	Implementing POJOs with EJB 3
	10.1 Overview of EJB 3
	10.1.1 Key improvements in EJB 3
	10.1.2 Key limitations of EJB 3

	10.2 Implementing a domain model with EJB 3
	10.2.1 Mapping the classes to the database
	10.2.2 Implementing repositories
	10.2.3 Testing the persistent EJB domain model

	10.3 Implementing a façade with EJB 3
	10.3.1 Turning a POJO façade into a session bean
	10.3.2 Detaching objects

	10.4 Assembling the components
	10.4.1 Using EJB dependency injection
	10.4.2 Integrating Spring and EJB dependency injection
	10.4.3 Using Spring dependency injection

	10.5 Implementing other patterns with EJB 3
	10.5.1 Implementing the Exposed Domain Model pattern
	10.5.2 Implementing the Transaction Script pattern
	10.5.3 Implementing dynamic paged queries
	10.5.4 Implementing the concurrency patterns

	10.6 Summary

	PART 4 Dealing with databases and concurrency
	Implementing dynamic paged queries
	11.1 Key design issues
	11.1.1 Implementing a paging mechanism
	11.1.2 Generating queries dynamically
	11.1.3 Improving the performance of SQL queries

	11.2 Implementing dynamic paged queries with iBATIS
	11.2.1 Using queryForList() to select the rows
	11.2.2 Using ROWNUM to select the rows

	11.3 Implementing paged queries with JDO and Hibernate
	11.3.1 Generating Hibernate and JDO queries dynamically
	11.3.2 Loading the data with a single SELECT statement
	11.3.3 Loading a subset of an object’s fields
	11.3.4 Working with a denormalized schema
	11.3.5 Implementing paging

	11.4 A JDO design example
	11.4.1 The JDOOrderRepositoryImpl class
	11.4.2 The ExecuteFindOrdersQuery class

	11.5 A Hibernate design example
	11.5.1 The HibernateOrderRepositoryImpl class
	11.5.2 The FindOrdersHibernateCallback class

	11.6 Using JDO and Hibernate native SQL queries
	11.6.1 Using JDO native SQL queries
	11.6.2 Using Hibernate SQL queries

	11.7 Summary

	Database transactions and concurrency
	12.1 Handling concurrent access to shared data
	12.1.1 Using fully isolated transactions
	12.1.2 Optimistic locking
	12.1.3 Pessimistic locking
	12.1.4 Using a combination of locking mechanisms

	12.2 Handling concurrent updates in a JDBC/iBATIS application
	12.2.1 Design overview
	12.2.2 Using optimistic locking
	12.2.3 Using pessimistic locking
	12.2.4 Using serializable or repeatable read transactions
	12.2.5 Signaling concurrent update failures

	12.3 Handling concurrent updates with JDO and Hibernate
	12.3.1 Example domain model design
	12.3.2 Handling concurrent updates with JDO
	12.3.3 Handling concurrent updates with Hibernate

	12.4 Recovering from data concurrency failures
	12.4.1 Using an AOP interceptor to retry transactions
	12.4.2 Configuring the AOP interceptor

	12.5 Summary

	Using offline locking patterns
	13.1 The need for offline locking
	13.1.1 An example of an edit-style use case
	13.1.2 Handling concurrency in an edit-style use case

	13.2 Overview of the Optimistic Offline Lock pattern
	13.2.1 Applying the Optimistic Offline Lock pattern
	13.2.2 Benefits and drawbacks
	13.2.3 When to use this pattern

	13.3 Optimistic offline locking with JDO and Hibernate
	13.3.1 Using version numbers or timestamps
	13.3.2 Using detached objects

	13.4 Optimistic offline locking with detached objects example
	13.4.1 Implementing the domain service
	13.4.2 Implementing the persistent domain class
	13.4.3 Detaching and attaching orders

	13.5 The Pessimistic Offline Lock pattern
	13.5.1 Motivation
	13.5.2 Using the Pessimistic Offline Lock pattern
	13.5.3 Benefits and drawbacks
	13.5.4 When to use this pattern

	13.6 Pessimistic offline locking design decisions
	13.6.1 Deciding what to lock
	13.6.2 Determining when to lock and unlock the data
	13.6.3 Choosing the type of lock
	13.6.4 Identifying the lock owner
	13.6.5 Maintaining the locks
	13.6.6 Handling locking failures

	13.7 Using pessimistic offline locking in a domain model
	13.7.1 Implementing a lock manager with iBATIS
	13.7.2 Implementing the domain service
	13.7.3 Adapting the other use cases

	13.8 Summary

	References
	Index

